*P2398 GCD SUM[数论]
题目描述
for i=1 to n
for j=1 to n
sum+=gcd(i,j)
解析
给出n求sum. gcd(x,y)表示x,y的最大公约数.
直接枚举复杂度为\(O(n^2)\),显然无法承受。
我们需要寻找更优的算法。
首先,打表找规律,当\(n=10\)时,是这样的
1 1 1 1 1 1 1 1 1 1
1 2 1 2 1 2 1 2 1 2
1 1 3 1 1 3 1 1 3 1
1 2 1 4 1 2 1 4 1 2
1 1 1 1 5 1 1 1 1 5
1 2 3 2 1 6 1 2 3 2
1 1 1 1 1 1 7 1 1 1
1 2 1 4 1 2 1 8 1 2
1 1 3 1 1 3 1 1 9 1
1 2 1 2 5 2 1 2 1 10
可以看到,上半部分和下半部分是对称的,我们考虑一边即可。
若\(gcd(i,j)=x\),那么\(gcd(ki,kj)=kx\)。
因此,显然对于任意\(gcd(i,j)=1\),有\(gcd(ki,kj)=k\),且充要。我们枚举\(k\),对于每个\(k\),计算\(gcd(ki,kj)=k\)的数量即可。
由于\(gcd(ki,kj),gcd(kj,ki)\)被算作分开的两次,而\(gcd(i,i)\)只会被算一次,所以减去1。
因此,对于所有的\(i\),计算
\]
预处理\(\varphi(k)\)的前缀和即可\(O(n)\)求解。
推导过程
Ans
&=\sum_{i=1}^n\sum_{j=1}^ngcd(i,j)\\
&=\sum_{i=1}^n\sum_{j=1}^n\sum_{k=1}^{n}[gcd(i,j)==k]\\
&=\sum_{i=1}^n\sum_{j=1}^n\sum_{k\mid i , j}[gcd(i/k,j/k)==1]\\
&=\sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}(2\sum_{j=1}^{i}\sum_{k=1}^n[gcd(i,j)==1]-1)\\
&=\sum_{i=1}^n(\sum_{k=1}^{\lfloor \frac{n}{i} \rfloor}2*\varphi(k)-1)*i
\end{align}
\]
*P2398 GCD SUM[数论]的更多相关文章
- 洛谷P2398 GCD SUM [数论,欧拉筛]
题目传送门 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式 ...
- P2398 GCD SUM
P2398 GCD SUM一开始是憨打表,后来发现打多了,超过代码长度了.缩小之后是30分,和暴力一样.正解是,用f[k]表示gcd为k的一共有多少对.ans=sigma k(1->n) k*f ...
- 洛谷P2398 GCD SUM (数学)
洛谷P2398 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入 ...
- 洛谷P2398 GCD SUM
题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入格式: n 输出格式: sum ...
- 洛谷 P2398 GCD SUM || uva11417,uva11426,uva11424,洛谷P1390,洛谷P2257,洛谷P2568
https://www.luogu.org/problemnew/show/P2398 $原式=\sum_{k=1}^n(k\sum_{i=1}^n\sum_{j=1}^n[(i,j)=k])$ 方法 ...
- 洛谷 P2398 GCD SUM 题解
题面 挺有意思的. 设f[i]表示gcd(i,j)=i的个数,g[i]表示k|gcd(i,j)的个数; g[i]=(n/i)*(n/i); g[i]=f[i]+f[2i]+f[3i]+...; 所以f ...
- GCD SUM 强大的数论,容斥定理
GCD SUM Time Limit: 8000/4000MS (Java/Others) Memory Limit: 128000/64000KB (Java/Others) SubmitStatu ...
- Luogu2398 GCD SUM
Luogu2398 GCD SUM 求 \(\displaystyle\sum_{i=1}^n\sum_{j=1}^n\gcd(i,j)\) \(n\leq10^5\) 数论 先常规化式子(大雾 \[ ...
- GCD SUM
GCD SUM 求 \[\sum_{i=1}^n\sum_{j=1}^n\gcd(i,j) \] 将原式变换得到 \[\sum_{d=1}^nd\sum_{i=1}^{\lfloor\frac{n}{ ...
随机推荐
- (三)Python知识图谱
查看大图
- 基于面绘制的MC算法以及基于体绘制的 Ray-casting 实现Dicom图像的三维重建(python实现)
加入实验室后,经过张老师的介绍,有幸与某公司合共共同完成某个项目,在此项目中我主要负责的是三维 pdf 报告生成.Dicom图像上亮度.对比度调整以及 Dicom图像三维重建.今天主要介绍一下完成Di ...
- [转帖]期待下一个十年|CIS 2019温馨回顾(附PPT下载)
期待下一个十年|CIS 2019温馨回顾(附PPT下载) https://www.freebuf.com/fevents/222236.html shidongqi2019-12-06共26587人围 ...
- Linux下嵌入式Web服务器BOA和CGI编程开发
**目录**一.环境搭建二.相关配置(部分)三.调试运行四.测试源码参考五.常见错误六.扩展(CCGI,SQLite) # 一.环境搭建操作系统:Ubuntu12.04 LTSboa下载地址(但是我找 ...
- 下载并使用MNIST数据集
TensorFlow提供了一个库,可以直接用来自动下载与安装MNIST. MNIST里包含3个数据集:第一个是训练数据集(mnist.train.images),另外两个分别是测试数据集(mnist. ...
- pytest_03_pycharm运行pytest (转:上海悠悠)
前言 上一篇pytest文档2-用例运行规则已经介绍了如何在cmd执行pytest用例,平常我们写代码在pycharm比较多 写完用例之后,需要调试看看,是不是能正常运行,如果每次跑去cmd执行,太麻 ...
- Flannel 原理简析及安装
flannel是CoreOS提供用于解决Dokcer集群跨主机通讯的覆盖网络工具.它的主要思路是:预先留出一个网段,每个主机使用其中一部分,然后每个容器被分配不同的ip:让所有的容器认为大家在同一个直 ...
- nginx+lua+storm的热点缓存的流量分发策略自动降级
1.在storm中,实时的计算出瞬间出现的热点. 某个storm task,上面算出了1万个商品的访问次数,LRUMap 频率高一些,每隔5秒,去遍历一次LRUMap,将其中的访问次数进行排序,统计出 ...
- Spring-Cloud之Spring-Boot框架-1
一.Spring Boot 是由 Pivotal 团队开发的 Spring 框架,采用了生产就绪的观点 ,旨在简化配置,致力于快速开发. Spring Boot 框架提供了自动装配和起步依赖,使开发人 ...
- C# 获取系统字体方法
//需要引用命名空间 using System.Drawing; using System.Drawing.Text; //获取系统字体方法 public dynamic GetFontNames() ...