网络流SAP+gap+弧优化算法
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 54962 | Accepted: 20960 |
Description
clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch.
Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network.
Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle.
Input
for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow
through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.
Output
Sample Input
5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10
Sample Output
50
#include"stdio.h"
#include"string.h"
#include"queue"
#include"stack"
#include"iostream"
#include"stdlib.h"
#define inf 99999999
#define M 50000
using namespace std;
struct st
{
int u,v,w,next;
}edge[M];
int t,head[M],cur[M],q[M],gap[M],dis[M];
void init()
{
t=0;
memset(head,-1,sizeof(head));
}
void add(int u,int v,int w)
{
edge[t].u=u;
edge[t].v=v;
edge[t].w=w;
edge[t].next=head[u];
head[u]=t++; edge[t].u=v;
edge[t].v=u;
edge[t].w=0;
edge[t].next=head[v];
head[v]=t++;
}
void bfs(int start,int endl)//建立到汇点的距离层次图存在dis[]数组中
{
int rear=0,i,j;
memset(dis,-1,sizeof(dis));
memset(gap,0,sizeof(gap));//gap[x]记录dis[i]=x出现了多少次
dis[endl]=0;
gap[dis[endl]]=1;
q[rear++]=endl;
for(i=0;i<rear;i++)
{
for(j=head[q[i]];j!=-1;j=edge[j].next)
{
int v=edge[j].v;
if(dis[v]==-1)
{
++gap[dis[v]=dis[q[i]]+1];
q[rear++]=v;
}
}
}
}
int SAP(int start,int endl,int n)
{
int ans=0;
bfs(start,endl);
int cur[M];//代替head数组
memcpy(cur,head,sizeof(head));
int stack[M],top=0;//建立手工栈
int u=start,i;
while(dis[start]<n)
{
if(u==endl)//当搜到终点时即找到从原点到汇点的增光路,正常处理即可
{
int mini=inf,tep;
for(i=0;i<top;i++)
{
if(mini>edge[stack[i]].w)
{
mini=edge[stack[i]].w;
tep=i;
}
}
for(i=0;i<top;i++)
{
edge[stack[i]].w-=mini;
edge[stack[i]^1].w+=mini;
}
ans+=mini;
top=tep;
u=edge[stack[top]].u;//此时的u为变容量为0的u
}
if(dis[u]&&gap[dis[u]-1]==0)//出现了断层,没有增广路
break;
for(i=cur[u];i!=-1;i=edge[i].next)//遍历与u相连的未遍历的节点
{
int v=edge[i].v;
if(dis[v]!=-1)
{
if(edge[i].w&&dis[u]==dis[v]+1)//层次关系找到允许路径
break;
}
}
if(i!=-1)//找到允许弧
{
cur[u]=i;
stack[top++]=i;
u=edge[i].v;
}
else//无允许的路径,修改标号 当前点的标号比与之相连的点中最小的多1
{
int mini=n;
for(i=head[u];i!=-1;i=edge[i].next)
{
if(edge[i].w==0)continue;
int v=edge[i].v;
if(mini>dis[v])//找到与u相连的v中dep[v]最小的点
{
mini=dis[v];
cur[u]=i;//最小标号就是最新的允许弧
}
}
--gap[dis[u]];//dep[u] 的个数变化了 所以修改gap
++gap[dis[u]=mini+1];//将dep[u]设为min(dep[v]) + 1, 同时修改相应的gap[]
if(u!=start)//该点非源点&&以u开始的允许弧不存在,退点
u=edge[stack[--top]].u;
}
}
return ans;
}
int main()
{
int n,m;
while(scanf("%d%d",&m,&n)!=-1)
{
init();
while(m--)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
}
int ans=SAP(1,n,n);
printf("%d\n",ans);
}
}
网络流SAP+gap+弧优化算法的更多相关文章
- poj 3469 最小割模板sap+gap+弧优化
/*以核心1为源点,以核心2为汇点建图,跑一遍最大流*/ #include<stdio.h> #include<string.h> #include<queue> ...
- 网络流 - dinic + 当前弧优化【代码】
这是初学网络流的时候从<算法竞赛进阶指南>抄下来的一份代码,自己理解的也不是很透彻. 注意,边要从 \(1\) 开始计,不然直接 \(xor\) 运算的话取反边会直接炸掉. #includ ...
- ARC085E(最小割规划【最大流】,Dinic当前弧优化)
#include<bits/stdc++.h>using namespace std;typedef long long ll;const ll inf=0x3f3f3f3f;int cn ...
- 【最大流之Dinic算法】POJ1273 【 & 当前弧优化 & 】
总评一句:Dinic算法的基本思想比较好理解,就是它的当前弧优化的思想,网上的资料也不多,所以对于当前弧的优化,我还是费了很大的功夫的,现在也一知半解,索性就写一篇博客,来发现自己哪里的算法思想还没理 ...
- DINIC网络流+当前弧优化
DINIC网络流+当前弧优化 const inf=; type rec=record s,e,w,next:longint; end; var b,bb,d,q,tb:..] of longint; ...
- P3376 网络流-最大流模板题(Dinic+当前弧优化)
(点击此处查看原题) Dinic算法 Dinic算法相对于EK算法,主要区别在于Dinic算法对图实现了分层,使得我们可以用一次bfs,一次dfs使得多条增广路得到增广 普通的Dinic算法已经可以处 ...
- 解题报告:hdu 3572 Task Schedule(当前弧优化Dinic算法)
Problem Description Our geometry princess XMM has stoped her study in computational geometry to conc ...
- [Poj2112][USACO2003 US OPEN] Optimal Milking [网络流,最大流][Dinic+当前弧优化]
题意:有K个挤奶机编号1~K,有C只奶牛编号(K+1)~(C+K),每个挤奶机之多能挤M头牛,现在让奶牛走到挤奶机处,求奶牛所走的最长的一条边至少是多少. 题解:从起点向挤奶机连边,容量为M,从挤奶机 ...
- 网络流--最大流--Dinic模板矩阵版(当前弧优化+非当前弧优化)
//非当前弧优化版 #include <iostream> #include <cstdio> #include <math.h> #include <cst ...
随机推荐
- CSS3加载动画
图1 通常我们都使用gif格式的图片或者使用Ajax来实现诸如这类的动态加载条,但是现在CSS3也可以完成,并且灵活性更大. 选1个例子看看怎么实现的吧: 效果图: 图2 代码: 使用1个名为'l ...
- 【转】使用 Jmeter 做 Web 接口测试
最近总结了一下在接口测试方面的知识与心得,在这里与大家分享一下,如有说的不对的地方请多多指正. 接口测试概述 定义 API testing is a type of software testing ...
- ES学习2
1:es中的分页 一般搜索引擎中的分页都不会提供很大的页面查询,因为查询的页码越大,查询效率越低. 例子: 我们就先预想一下我们在搜索一个拥有5个主分片的索引.当我们请求第一页搜索的时 候,每个分片产 ...
- 关于Unity中UI中的Mask组件、Text组件和布局
一.Mask组件 遮罩,Rect Mask矩形Mask(Rect Mask2D组件),图片Mask(Mask组件)(图片Mask的透明度不为0的部分显示子图片,为0的部分不显示子图片) Rect Ma ...
- e682. 获得打印页的尺寸
Note that (0, 0) of the Graphics object is at the top-left of the actual page, which is outside the ...
- ffmpeg h264+ts +udp传输
http://bbs.csdn.net/topics/370246456 http://1229363.blog.163.com/blog/static/19743427201001244711137 ...
- (转)使用AfxGetMainWnd函数的一个心得
作者:朱金灿 来源:http://blog.csdn.net/clever101/ 使用AfxGetMainWnd函数获取MFC程序中的主框架类指针是一个常用作法.但是你会发现这一做法有时也会失灵.不 ...
- 小知识(class文件查看jdk版本,beyond,could not find setter)
最近几天工作当中遇到了一些问题,所以记录下来. 1.如何查看class文件的sdk版本 2.beyond compare比对文件 3.Could not find setter for native_ ...
- Mac 下,修改plist文件
/usr/libexec/PlistBuddy -c "Set :CFBundleDisplayName $DISPLAY_NAME" "${PROJECT_TEMP_D ...
- Hadoop参数汇总
linux参数 以下参数最好优化一下: 文件描述符ulimit -n 用户最大进程 nproc (hbase需要 hbse book) 关闭swap分区 设置合理的预读取缓冲区 Linux的内核的IO ...