HDU3530 Subsequence(单调队列)
题意是说给出一个序列,现在要求出这个序列的一个最长子区间,要求子区间的最大值与最小值的差在[m, k]范围内,求区间长度
做法是维护两个队列,一个维护到当前位置的最大值,一个维护最小值,然后计算当前节点i作为右端点的最常区间长度,那么扫描两个队列,维持单调性。
然后比较两个队列头的差值,
1.如果差值满足条件,那么记录答案;
2.如果差值小于m,那么此时没有答案,说明没有以i作为右端点的区间满足条件(表示前i个数的最大值减去前i个数的最小值的差<m,那么不论如何调整起点,都不可能有解)
3.如果差值大于k,说明此时区间的最大值与最小值的差过大,那我们可以通过缩小最大值(最大值(递减)队列向右移动)或者增大最小值(最小值(递增)队列向右移动)的方法使得差值变小,那到底是移动哪一个指针取决于此时队首的这两个值谁的编号要小(保证区间是合法的)。
另外有一点要注意的细节是,上述的第三种情况,在移动队首的指针时,如果最后被删除的元素所指向的下标p,此时队首的元素指向的下标是q, 此时合法区间为[p +1, i]而不是[q, i]
//#pragma comment(linker, "/STACK:1677721600")
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <cmath>
#include <ctime>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
#define INF 0x3f3f3f3f
#define inf (-((LL)1<<40))
#define lson k<<1, L, (L + R)>>1
#define rson k<<1|1, ((L + R)>>1) + 1, R
#define mem0(a) memset(a,0,sizeof(a))
#define mem1(a) memset(a,-1,sizeof(a))
#define mem(a, b) memset(a, b, sizeof(a))
#define FIN freopen("in.txt", "r", stdin)
#define FOUT freopen("out.txt", "w", stdout)
#define rep(i, a, b) for(int i = a; i <= b; i ++)
#define dec(i, a, b) for(int i = a; i >= b; i --) template<class T> T MAX(T a, T b) { return a > b ? a : b; }
template<class T> T MIN(T a, T b) { return a < b ? a : b; }
template<class T> T GCD(T a, T b) { return b ? GCD(b, a%b) : a; }
template<class T> T LCM(T a, T b) { return a / GCD(a,b) * b; } //typedef __int64 LL;
typedef long long LL;
const int MAXN = + ;
const int MAXM = ;
const double eps = 1e-;
LL MOD = ; int a[MAXN], L, H, n;
int q1[MAXN], q2[MAXN]; int find_ans() {
int f1, f2, t1, t2, l1 = -, l2 = -, ans = ;
f1 = f2 = t1 = t2 = ;
rep (i, , n - ) {
while(f1 < t1 && a[q1[t1 - ]] <= a[i]) t1 --;//维护最大值队列(递减)
q1[t1++] = i;
while(f2 < t2 && a[q2[t2 - ]] >= a[i]) t2 --;//维护最小值队列(递增)
q2[t2++] = i;
while(a[q1[f1]] - a[q2[f2]] > H) {//差值过大
q1[f1] < q2[f2] ? l1 = q1[f1 ++] : l2 = q2[f2 ++];
}
if(a[q1[f1]] - a[q2[f2]] >= L) {//差值满足条件
ans = max(ans, i - max(l1, l2));
}
}
return ans;
} int main()
{
while(~scanf("%d %d %d", &n, &L, &H)) {
rep (i, , n - ) scanf("%d", a + i);
printf("%d\n", find_ans());
}
return ;
}
HDU3530 Subsequence(单调队列)的更多相关文章
- HDU - 3530 Subsequence (单调队列)
Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- hdu3530 双单调队列的维护
单调队列有部分堆的功能,但其只能维护给定区间中比v大的值或者比v小的值,且其一般存储元素的下标. 思路:两个单调队列维护最大值与最小值的下标,如果区间的最大值最小值之差大于给定范围,则选择队首靠左的删 ...
- hdu 3530 Subsequence 单调队列
题目链接 题目给出n个数, 一个下界m, 一个上界k, 让你求出最长的一段序列, 满足这段序列中的最大的数-最小的数<=k&&>=m, 输出这段长度. 可以维护两个队列, ...
- [hdu3530]Subsequence (单调队列)
题意:求在一段序列中满足m<=max-min<=k的最大长度. 解题关键:单调队列+dp,维护前缀序列的最大最小值,一旦大于k,则移动左端点,取max即可. #include<cst ...
- Subsequence(HDU3530+单调队列)
题目链接 传送门 题面 题意 找到最长的一个区间,使得这个区间内的最大值减最小值在\([m,k]\)中. 思路 我们用两个单调队列分别维护最大值和最小值,我们记作\(q1\)和\(q2\). 如果\( ...
- hdu3530 单调队列
Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tota ...
- HDU 3530 Subsequence(单调队列)
传送门 Description There is a sequence of integers. Your task is to find the longest subsequence that s ...
- Subsequence(两个单调队列)
Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tota ...
- 【单调队列+尺取】HDU 3530 Subsequence
acm.hdu.edu.cn/showproblem.php?pid=3530 [题意] 给定一个长度为n的序列,问这个序列满足最大值和最小值的差在[m,k]的范围内的最长子区间是多长? [思路] 对 ...
- 【专题系列】单调队列优化DP
Tip:还有很多更有深度的题目,这里不再给出,只给了几道基本的题目(本来想继续更的,但是现在做的题目不是这一块内容,以后有空可能会继续补上) 单调队列——看起来就是很高级的玩意儿,显然是个队列,而且其 ...
随机推荐
- 解决android studio 模拟器取法启动声音的错误
Emulator: dsound: Reason: No sound driver is available https://jingyan.baidu.com/article/a65957f4348 ...
- Vue-cli proxyTable 解决开发环境的跨域问题
Vue-cli proxyTable 解决开发环境的跨域问题 proxyTable: { '/list': { target: 'http://api.xxxxxxxx.com', pathRewri ...
- source insight 4.0的基本使用方法(转)
源:source insight 4.0的基本使用方法 source insight 4设置
- P1174 打砖块
P1174 打砖块 普通分组背包:50pts 题解说的啥????(大雾) 看了半天 $s[0/1][i][j]$表示第$i$列用$j$发子弹,最后一发是1/否0打在该列上的价值 $f[0/1][i][ ...
- HashMap 遍历的两种方式及性能比较
HashMap 是Java开发中经常使用的数据结构.相信HashMap 的基本用法你已经很熟悉了.那么我们该如何遍历HashMap 呢?哪种遍历方式的性能更好呢?本篇文章来为你解决这个疑惑. 一.Ha ...
- HDU 4370 0 or 1(转化为最短路)题解
思路:虽然是最短路专题里的,但也很难想到是最短路,如果能通过这些关系想到图论可能会有些思路.我们把X数组看做邻接矩阵,那么三个条件就转化为了:1.1的出度为1:2.n的入度为1:3.2~n-1的出度等 ...
- springboot中websoket的使用
知识点:springboot项目中,websoket实时推送技术的介绍与使用 一.双向通信 http协议通信只能由客户端发起请求,服务端返回查询结果,如果我们想定时获取服务端的状态变化,相对 ...
- php 数值数组遍历
<?php $cars=array("Volvo","BMW","Toyota"); $arrlength=count($cars); ...
- install ros-indigo-filters
CMake Warning at /opt/ros/indigo/share/catkin/cmake/catkinConfig.cmake: (find_package): Could not fi ...
- python 输出环境变量
import os # Access all environment variables print('*---------------ENVIRON-------------------*') pr ...