题面

给定一些字符串,求出它们的最长公共子串 输入格式 输入至多 \(10\) 行,每行包含不超过 \(100000\)个的小写字母,表示一个字符串 输出格式 一个数,最长公共子串的长度 若不存在最长公共子串,请输出 \(0\)

Sol

一个串建立\(sam\)

每个串在上面匹配

每个点匹配的长度可以由后继转移过来

拓扑序上\(DP\)

# include <bits/stdc++.h>
# define IL inline
# define RG register
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll; template <class Int>
IL void Input(RG Int &x){
RG int z = 1; RG char c = getchar(); x = 0;
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
x *= z;
} const int maxn(2e5 + 5); int n, trans[26][maxn], fa[maxn], len[maxn], tot = 1, last = 1, ans, f[maxn], g[maxn];
int id[maxn], t[maxn];
char s[maxn]; IL void Extend(RG int c){
RG int p = last, np = ++tot; last = np;
len[np] = len[p] + 1;
while(p && !trans[c][p]) trans[c][p] = np, p = fa[p];
if(!p) fa[np] = 1;
else{
RG int q = trans[c][p];
if(len[q] == len[p] + 1) fa[np] = q;
else{
RG int nq = ++tot;
fa[nq] = fa[q], len[nq] = len[p] + 1;
for(RG int i = 0; i < 26; ++i) trans[i][nq] = trans[i][q];
fa[q] = fa[np] = nq;
while(p && trans[c][p] == q) trans[c][p] = nq, p = fa[p];
}
}
} int main(RG int argc, RG char* argv[]){
scanf(" %s", s), n = strlen(s);
for(RG int i = 0; i < n; ++i) Extend(s[i] - 'a');
for(RG int i = 1; i <= tot; ++i) ++t[g[i] = len[i]];
for(RG int i = 1; i <= tot; ++i) t[i] += t[i - 1];
for(RG int i = 1; i <= tot; ++i) id[t[len[i]]--] = i;
while(scanf(" %s", s) != EOF){
n = strlen(s);
for(RG int i = 1; i <= tot; ++i) f[i] = 0;
for(RG int i = 0, nw = 1, cnt = 0; i < n; ++i){
RG int c = s[i] - 'a';
if(trans[c][nw]) ++cnt, nw = trans[c][nw];
else{
while(nw && !trans[c][nw]) nw = fa[nw], cnt = len[nw];
if(!nw) nw = 1, cnt = 0;
else cnt++, nw = trans[c][nw];
}
f[nw] = max(f[nw], cnt);
}
for(RG int i = tot; i; --i) f[fa[id[i]]] = max(f[fa[id[i]]], f[id[i]]);
for(RG int i = 1; i <= tot; ++i) g[i] = min(g[i], f[i]);
}
for(RG int i = 1; i <= tot; ++i) ans = max(ans, g[i]);
printf("%d\n", ans);
return 0;
}

SPOJ:LCS2 - Longest Common Substring II的更多相关文章

  1. spoj 1812 LCS2 - Longest Common Substring II (后缀自己主动机)

    spoj 1812 LCS2 - Longest Common Substring II 题意: 给出最多n个字符串A[1], ..., A[n], 求这n个字符串的最长公共子串. 限制: 1 < ...

  2. 【刷题】SPOJ 1812 LCS2 - Longest Common Substring II

    A string is finite sequence of characters over a non-empty finite set Σ. In this problem, Σ is the s ...

  3. SPOJ 1812 LCS2 - Longest Common Substring II (后缀自动机、状压DP)

    手动博客搬家: 本文发表于20181217 23:54:35, 原地址https://blog.csdn.net/suncongbo/article/details/85058680 人生第一道后缀自 ...

  4. SPOJ 1812 LCS2 - Longest Common Substring II

    思路 后缀自动机求多串的最长公共子串 对第一个建出后缀自动机,其他的在SAM上匹配,更新到一个节点的匹配长度最大值即可,最后对所有最大值取min得到一个节点的答案,对所有节点答案求max即可 然后注意 ...

  5. spoj1812 LCS2 - Longest Common Substring II

    地址:http://www.spoj.com/problems/LCS2/ 题面: LCS2 - Longest Common Substring II no tags  A string is fi ...

  6. SPOJ LCS2 - Longest Common Substring II 后缀自动机 多个串的LCS

    LCS2 - Longest Common Substring II no tags  A string is finite sequence of characters over a non-emp ...

  7. SPOJ LCS2 - Longest Common Substring II

    LCS2 - Longest Common Substring II A string is finite sequence of characters over a non-empty finite ...

  8. 【SP1812】LCS2 - Longest Common Substring II

    [SP1812]LCS2 - Longest Common Substring II 题面 洛谷 题解 你首先得会做这题. 然后就其实就很简单了, 你在每一个状态\(i\)打一个标记\(f[i]\)表 ...

  9. SPOJ1812 LCS2 - Longest Common Substring II【SAM LCS】

    LCS2 - Longest Common Substring II 多个字符串找最长公共子串 以其中一个串建\(SAM\),然后用其他串一个个去匹配,每次的匹配方式和两个串找\(LCS\)一样,就是 ...

随机推荐

  1. jmeter ——JDBC Request中从数据库中读两个字段给接口取值

    前置条件数据库: 给接口传:tid和shopid这俩字段 直接从JDBC Request开始: Variable name:这里写入数据库连接池的名字(和JDBC Connection Configu ...

  2. JDK8的安装及环境配置

    原文链接:https://www.cnblogs.com/chenxj/p/10137221.html 1.下载JDK: a.直接官网下载:http://www.oracle.com/: b.或百度网 ...

  3. 零基础学习Python数据分析

    网上虽然有很多Python学习的教程,但是大多是围绕Python网页开发等展开.数据分析所需要的Python技能和网页开发等差别非常大,本人就是浪费了很多时间来看这些博客.书籍.所以就有了本文,希望能 ...

  4. leetcode-36-有效的数独

    题目描述: 判断一个 9x9 的数独是否有效.只需要根据以下规则,验证已经填入的数字是否有效即可. 数字 1-9 在每一行只能出现一次. 数字 1-9 在每一列只能出现一次. 数字 1-9 在每一个以 ...

  5. leetcode-695-Max Area of Island(BFS)

    题目描述: Given a non-empty 2D array grid of 0's and 1's, an island is a group of 1's (representing land ...

  6. web环境中的spring MVC

    1. web.xml文件的简单详解 在web环境中, spring MVC是建立在IOC容器的基础上,要了解spring mvc,首先要了解Spring IOC容器是如何在web环境中被载入并起作用的 ...

  7. Web安全篇之SQL注入攻击

    在网上找了一篇关于sql注入的解释文章,还有很多技术,走马观花吧 文章来源:http://www.2cto.com/article/201310/250877.html ps:直接copy,格式有点问 ...

  8. [原创] PHP 使用Redis实现锁

    目录 锁实现的注意点 加锁 connect 与 pconnect 解锁 Redis 中使用 Lua 脚本的注意点 Redis集群分布式锁 RedLock 算法 锁实现的注意点 互斥: 任意时刻, 只能 ...

  9. MyBatis学习笔记(一)创建第一个MyBatis项目

    一.新建Maven项目 http://www.mybatis.org/mybatis-3/zh/index.html 该链接为MyBatis官方地址 创建MyBatis项目主要有两种办法,一种是导入j ...

  10. Exponentiation POJ-1001

    http://poj.org/problem?id=1001 //10000000 100000 #include<iostream> #include<cstring> us ...