Traveling salesmen of nhn. (the prestigious Korean internet company) report their current location to the company on a regular basis. They also have to report their new location to the company if they are moving to another location. The company keep each salesman's working path on a map of his working area and uses this path information for the planning of the next work of the salesman. The map of a salesman's working area is represented as a connected and undirected graph, where vertices represent the possible locations of the salesman an edges correspond to the possible movements between locations. Therefore the salesman's working path can be denoted by a sequence of vertices in the graph. Since each salesman reports his position regularly an he can stay at some place for a very long time, the same vertices of the graph can appear consecutively in his working path. Let a salesman's working path be correct if two consecutive vertices correspond either the same vertex or two adjacent vertices in the graph.

For example on the following graph representing the working area of a salesman,

<tex2html_verbatim_mark>

a reported working path [1 2 2 6 5 5 5 7 4] is a correct path. But a reported working path [1 2 2 7 5 5 5 7 4] is not a correct path since there is no edge in the graph between vertices 2 a 7. If we assume that the salesman reports his location every time when he has to report his location (but possibly incorrectly), then the correct path could be [1 2 2 4 5 5 5 7 4], [1 2 4 7 5 5 5 7 4], or [1 2 2 6 5 5 5 7 4].

The length of a working path is the number of vertices in the path. We define the distance between two pathsA = a1a2...an <tex2html_verbatim_mark>and B = b1b2...bn <tex2html_verbatim_mark>of the same length n <tex2html_verbatim_mark>as

dist(AB) = d (aibi)

<tex2html_verbatim_mark>

where

d (ab) = 

<tex2html_verbatim_mark>

Given a graph representing the working area of a salesman and a working path (possible not a correct path),A <tex2html_verbatim_mark>, of a salesman, write a program to compute a correct working path, B <tex2html_verbatim_mark>, of the same length where the distance dist(AB) <tex2html_verbatim_mark>is minimized.

Input

The program is to read the input from standard input. The input consists of T <tex2html_verbatim_mark>test cases. The number of test cases (T) <tex2html_verbatim_mark>is given in the first line of the input. The first line of each test case contains two integers n1<tex2html_verbatim_mark>, n2 <tex2html_verbatim_mark>(3n1100, 2n24, 950) <tex2html_verbatim_mark>where n1 <tex2html_verbatim_mark>is the number of vertices of the graph representing the working map of a salesman and n2 <tex2html_verbatim_mark>is the number of edges in the graph. The input graph is a connected graph. Each vertex of the graph is numbered from 1 to n1 <tex2html_verbatim_mark>. In the following n2 <tex2html_verbatim_mark>lines, each line contains a pair of vertices which represent an edge of the graph. The last line of each test case contains information on a working path of the salesman. The first integer n <tex2html_verbatim_mark>(2n200) <tex2html_verbatim_mark>in the line is the length of the path and the following n integers represent the sequence of vertices in the working path.

Output

Your program is to write to standard output. Print one line for each test case. The line should contain the minimum distance of the input path to a correct path of the same length.

Sample Input

2
7 9
1 2
2 3
2 4
2 6
3 4
4 5
5 6
7 4
7 5
9 1 2 2 7 5 5 5 7 4
7 9
1 2
2 3
2 4
2 6
3 4
4 5
5 6
7 4
7 5
9 1 2 2 6 5 5 5 7 4

Sample Output

1
0
这题说的是给了一个图,如上,一个人从图中的任意位置出发,总共返回了n次自己的位置,这些位置可能是不合法的也就是所两点之间不相邻但是他们却在返回的点中相邻,返回的点中允许有相同的点相邻,(表明他也一直在这个点上),
输入 给n个点,表示返回的n个点。
输出 找出一条路径同样拥有n个点(合法的),使得这两序列的最长公共子序列最长,输出差异的几个数
先用floyd 求出任意点之间的距离,然后dp[i] 表示到i为止合法的最小差异, 初始化的是dp[i]=i;
然后 当他们的距离小于等于他们在序列中出现的顺序的时候 dp[j]=min(dp[j],dp[i]+j-i-1);
输出dp[n-1]
#include <iostream>
#include <cstdio>
#include <string.h>
#include <algorithm>
#include <cmath>
using namespace std;
const int maxn=;
const int INF =;
int dist[maxn][maxn];
int sa[maxn*];
int dp[maxn*];
void inti(int n1){
for(int k=; k<=n1; ++k)
for(int i=; i<=n1; ++i)
for(int j=; j<=n1; ++j)
if(dist[i][k]<INF&&dist[k][j]<INF)
dist[i][j]=dist[i][j]<(dist[i][k]+dist[k][j])?dist[i][j]:(dist[i][k]+dist[k][j]); }
int main()
{
int cas;
scanf("%d",&cas);
while(cas--){
int n1,n2;
scanf("%d%d",&n1,&n2);
for(int i=; i<=n1; i++)
for(int j=; j<=n1; ++j )
dist[i][j]=i==j?:INF;
for(int i=; i<n2; ++i){
int a,b;
scanf("%d%d",&a,&b);
dist[a][b]=dist[b][a]=;
}
inti(n1);
int n;
scanf("%d",&n);
for(int i=; i<n; ++i)
scanf("%d",&sa[i]);
for(int i=; i<n; ++i)
dp[i]=i;
for(int i=; i<n; ++i)
for( int j=i+; j<n; ++j)
if(dist[ sa[i] ][ sa[j] ]<=j-i)
dp[j]=min(dp[j], dp[i]+j-i-);
printf("%d\n",dp[n-]);
}
return ;
}

uva1424的更多相关文章

  1. UVa1424–Salesmen(DP)

    题目大意 给定一个包含n(n<=100)个点的无向连通图和一个长度为L的序列A(L<=200),你的任务是修改尽量少的数,使得序列中的任意两个相邻的数或者相同,或者对应图中两个相邻结点 题 ...

随机推荐

  1. Linux echo 命令

    echo命令用于输出指定的字符串,常见用法如下: [root@localhost ~]$ echo # 输出一个空白行[root@localhost ~]$ echo "hello worl ...

  2. mac 类似Xshell

    ssh -t root@12.23.34.45 -p 22 ssh -t 用户名@IP地址 -p 端口

  3. mac 安装mysql 修改密码

    我草!!! 上网查资料,安装mysql,一大推废话,简直就是他妈的瞎扯淡,真是能他妈的瞎编,草! 为了不让后面的同学看到那些狗屁不通的资料,我把自己安装mysql的步骤,以及修改mysql密码的方法梳 ...

  4. vs2010中使用luabind

    第一部分:在vs2010中生成luabind静态库和动态库 一.前期准备 1.安装boost 下载boost并解压到 D:\mylua\boost_1_56_0,进入 D:\mylua\boost_1 ...

  5. qq邮箱发送,mail from address must be same as authorization user

    由于邮箱发送的邮箱账号更换,所以重新测试.结果一直出错,要不就是请求超时,要不就是未授权. 用smtp 开始的时候,端口使用495,结果是请求超时. 后来改成25,结果是未授权. 再后来听人说,有一个 ...

  6. HTTP/2笔记之流和多路复用

    零.前言 本部分将讲解HTTP/2协议中对流的定义和使用,其实就是在说HTTP/2是若何做到多路复用的. 一.流和多路复用的关系 1. 流的概念 流(Stream),服务器和客户端在HTTP/2连接内 ...

  7. 并查集hdu4424

    Conquer a New Region Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  8. 170512、java日志文件log4j.properties配置详解

    一.Log4j配置 第一步:加入log4j-1.2.8.jar到lib下. 第二步:在CLASSPATH下建立log4j.properties.内容如下: 放在src下的话就不用配置 否则得去web. ...

  9. MySQL逗号分割字段的列转行

    前言: 由于很多业务表因为历史原因或者性能原因,都使用了违反第一范式的设计模式.即同一个列中存储了多个属性值(具体结构见下表). 这种模式下,应用常常需要将这个列依据分隔符进行分割,并得到列转行的结果 ...

  10. Django - 模型层 - 上

    一.ORM简介 MVC或者MVC框架中包括一个重要的部分,就是ORM,它实现了数据模型与数据库的解耦,即数据模型的设计不需要依赖于特定的数据库,通过简单的配置就可以轻松更换数据库,这极大的减轻了开发人 ...