【BZOJ2138】stone(线段树,Hall定理)
【BZOJ2138】stone(线段树,Hall定理)
题面
题解
考虑一个暴力。
我们对于每堆石子和每个询问,显然是匹配的操作。
所以可以把石子拆成\(a_i\)个,询问点拆成\(K_i\)个,这样就是每次进行一次二分图的匹配。
当然可以用网络流+线段树优化连边来做,但是这样复杂度太高。
还是回到二分图的匹配问题,我们现在要验证的就是是否存在对于当前询问点的完美匹配。
关于完美匹配,有\(Hall\)定理,如果存在完美匹配,假设左侧的点有\(|X|\)个,那么这些点连向右边的点的点集的并\(Y\),满足\(|X|\le |Y|\)
因为询问点拆开后,每个点的连向右边的点集都是一样的,所以相当于就是\(K_i\le|Y|\)
只提取出所有有用的石子,按顺序编号。设\(s_i\)表示前\(i\)堆石子的个数和。
如果存在完美匹配,那么在任意时刻,所有存在于区间\([L,R]\)之内的询问的石子个数的总和\(T[L,R]\)一定小于区间\([L,R]\)之内的石子的总和。
也就是\(s_R-s_{L-1}\ge T[L,R]\),发现题目中的性质,任何询问不存在包含关系。
那么我们假设\(TL_i\)表示左端点在\([1,i]\)中的询问的总和,\(TR_i\)表示右端点在\([1,i]\)中的询问的总和。
那么因为\(T[L,R]=TR_R-TL_{L-1}\),所以我们也可以很容易的表示出\(T\)来。
所以,现在的不等式表达为\(s[R]-s[L-1]\ge TR[R]-TL[L-1]\)
所以\(s[R]-TR[R]\ge s[L-1]-TL[L-1]\)
设\(f[i]=s[i]-TR[i],g[i]=s[i]-TL[i]\),所以是\(f[R]\ge g[L-1]\)
我们发现,如果从\([L,R]\)区间中拿走若干石头,在不等式中变化的只有\(TR[R]\)
也就是只有\(f[i]\)会减小。所以我们能够拿走的数量为\(min(K[i],f[R]-g[L-1])\)
对于当前询问区间\([L,R]\),会对于所有的\(x\in [1,L],y\in [R,n],[x,y]\)产生影响
也就是任何包含当前区间的区间也需要满足\(Hall\)定理,在本题中也就是\(f[y]\ge g[x]\)
那么当前步的答案就是所有的\(min(K[i],f[y]-g[x])\),那么取后缀\(f\)最小值,前缀\(g\)最大值即可。
每次拿线段树区间更新一下即可。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define RG register
#define MAX 40040
#define lson (now<<1)
#define rson (now<<1|1)
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n,m,a[MAX],K[MAX],s[MAX];
struct SegMentTree_Max
{
int t[MAX<<2],tag[MAX<<2];
void puttag(int now,int w){t[now]+=w;tag[now]+=w;}
void pushdown(int now,int l,int r){puttag(lson,tag[now]);puttag(rson,tag[now]);tag[now]=0;}
void Build(int now,int l,int r)
{
if(l==r){t[now]=s[l];return;}
int mid=(l+r)>>1;
Build(lson,l,mid);Build(rson,mid+1,r);
t[now]=max(t[lson],t[rson]);
}
void Modify(int now,int l,int r,int L,int R,int w)
{
if(L<=l&&r<=R){puttag(now,w);return;}
int mid=(l+r)>>1;pushdown(now,l,r);
if(L<=mid)Modify(lson,l,mid,L,R,w);
if(R>mid)Modify(rson,mid+1,r,L,R,w);
t[now]=max(t[lson],t[rson]);
}
int Query(int now,int l,int r,int L,int R)
{
if(L>R)return 0;if(L<=l&&r<=R)return t[now];
int mid=(l+r)>>1,ret=0;pushdown(now,l,r);
if(L<=mid)ret=max(ret,Query(lson,l,mid,L,R));
if(R>mid)ret=max(ret,Query(rson,mid+1,r,L,R));
return ret;
}
}G;
struct SegMentTree_Min
{
int t[MAX<<2],tag[MAX<<2];
void puttag(int now,int w){t[now]+=w;tag[now]+=w;}
void pushdown(int now,int l,int r){puttag(lson,tag[now]);puttag(rson,tag[now]);tag[now]=0;}
void Build(int now,int l,int r)
{
if(l==r){t[now]=s[l];return;}
int mid=(l+r)>>1;
Build(lson,l,mid);Build(rson,mid+1,r);
t[now]=min(t[lson],t[rson]);
}
void Modify(int now,int l,int r,int L,int R,int w)
{
if(L<=l&&r<=R){puttag(now,w);return;}
int mid=(l+r)>>1;pushdown(now,l,r);
if(L<=mid)Modify(lson,l,mid,L,R,w);
if(R>mid)Modify(rson,mid+1,r,L,R,w);
t[now]=min(t[lson],t[rson]);
}
int Query(int now,int l,int r,int L,int R)
{
if(L>R)return 0;if(L<=l&&r<=R)return t[now];
int mid=(l+r)>>1,ret=1e9;pushdown(now,l,r);
if(L<=mid)ret=min(ret,Query(lson,l,mid,L,R));
if(R>mid)ret=min(ret,Query(rson,mid+1,r,L,R));
return ret;
}
}F;
int main()
{
freopen("stone.in","r",stdin);
freopen("stone.out","w",stdout);
n=read();int X=read(),Y=read(),Z=read(),P=read();
for(int i=1;i<=n;++i)s[i]=a[i]=(1ll*(i-X)*(i-X)%P+1ll*(i-Y)*(i-Y)%P+1ll*(i-Z)*(i-Z)%P)%P;
for(int i=1;i<=n;++i)s[i]+=s[i-1];
m=read();K[1]=read(),K[2]=read(),X=read(),Y=read(),Z=read(),P=read();
for(int i=3;i<=m;++i)K[i]=(1ll*K[i-1]*X%P+1ll*K[i-2]*Y%P+Z)%P;
if(!m)return 0;G.Build(1,1,n);F.Build(1,1,n);
for(int i=1;i<=m;++i)
{
int l=read(),r=read();
K[i]=min(K[i],F.Query(1,1,n,r,n)-G.Query(1,1,n,1,l-1));
F.Modify(1,1,n,r,n,-K[i]);G.Modify(1,1,n,l,n,-K[i]);
printf("%d\n",K[i]);
}
return 0;
}
【BZOJ2138】stone(线段树,Hall定理)的更多相关文章
- 【BZOJ2138】stone(线段树+hall定理)
传送门 题意: 现在有\(n\)堆石子,每堆石子有\(a_i\)个. 之后会有\(m\)次,每次选择\([l,r]\)的石子堆中的石子扔\(k\)个,若不足,则尽量扔. 现在输出\(1\)~\(m\) ...
- BZOJ1135:[POI2009]Lyz(线段树,Hall定理)
Description 初始时滑冰俱乐部有1到n号的溜冰鞋各k双.已知x号脚的人可以穿x到x+d的溜冰鞋. 有m次操作,每次包含两个数ri,xi代表来了xi个ri号脚的人.xi为负,则代表走了这么多人 ...
- bzoj 1135 [POI2009]Lyz 线段树+hall定理
1135: [POI2009]Lyz Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 573 Solved: 280[Submit][Status][ ...
- BZOJ 1135 P3488 LYZ-Ice Skates 线段树+Hall
https://www.luogu.org/problem/P3488 根据Hall定理 左边任意一个区间L-R a[i]的和sum[l~r] 都要<= (R-L+1+d)*K 把(R-L+1) ...
- 【题解】 bzoj1135: [POI2009]Lyz (线段树+霍尔定理)
题面戳我 Solution 二分图是显然的,用二分图匹配显然在这个范围会炸的很惨,我们考虑用霍尔定理. 我们任意选取穿\(l,r\)的号码鞋子的人,那么这些人可以穿的鞋子的范围是\(l,r+d\),这 ...
- 【题解】 bzoj3693: 圆桌会议 (线段树+霍尔定理)
bzoj3693 Solution: 显然我们可以把人和位置抽象成点,就成了一个二分图,然后就可以用霍尔定理判断是否能有解 一开始我随便YY了一个\(check\)的方法:就是每次向后一组,我们就把那 ...
- 【BZOJ2138】stone Hall定理+线段树
[BZOJ2138]stone Description 话说Nan在海边等人,预计还要等上M分钟.为了打发时间,他玩起了石子.Nan搬来了N堆石子,编号为1到N,每堆包含Ai颗石子.每1分钟,Nan会 ...
- [BZOJ2138]stone(Hall定理,线段树)
Description 话说Nan在海边等人,预计还要等上M分钟.为了打发时间,他玩起了石子.Nan搬来了N堆石子,编号为1到N,每堆 包含Ai颗石子.每1分钟,Nan会在编号在\([L_i,R_i] ...
- [BZOJ2138]stone[霍尔定理+线段树]
题意 一共有 \(n\) 堆石子,每堆石子有一个数量 \(a\) ,你要进行 \(m\) 次操作,每次操作你可以在满足前 \(i-1\) 次操作的回答的基础上选择在 \([L_i,R_i]\) 区间中 ...
随机推荐
- toString()方法简单分析
问题描述 今天在使用spotbugs代码走查时发现这样一个问题,如下, String[] myArray=new String[] {"1","2"," ...
- python-模块详解
模块: 模块的分类: 第三方模块/扩展模块:没在安装python解释器的时候安装的那些功能 自定义模块:你写的功能如果是一个通用的功能,那你就把它当做一个模块 内置模块:安装python解释器的时候跟 ...
- 使用phpMyAdmin管理网站数据库(创建、导入、导出…)
作为一名站长,最重视的就是网站的数据安全了.本节襄阳网站优化就来讲讲如何使用phpMyAdmin管理软件进行mysql数据库的管理,实现基本的数据库管理用户.数据库的创建.数据的导入和导出操作(网站备 ...
- 小白初识 - 快速排序(QuickSort)
我个人觉得快速排序和归并排序有相似之处,都是用到了分治的思想,将大问题拆分成若干个小问题. 不同的地方是归并排序是先把大问题拆分好了之后再排序,而快速排序则是一边拆分,一边排序. 快速排序的原理就是, ...
- 《图解 HTTP 》阅读 —— 第五章
第5章 与HTTP协作的web服务器 一台服务器可以托管多个域名. 在相同的IP地址下,虚拟主机可以寄存多个不同主机名和域名的网站,所以在发送HTTP请求时,必须在Host首部内指定完整的主机名和域名 ...
- Docker 快速入门教程
本文目的是给几乎从未接触过docker,或者仅仅是听说或者通过新闻了解过Docker的同学 通过一个已有的Docker仓库构建和提交自己的Docker 镜像 这里会涉及到一些概念,但是不单独介绍 这里 ...
- VMware VSAN 入门与配置(一)
----VMware VSAN beta版已经出来一段时间了,今天终于正式发布(同时VMware View 5.3.1也正是发布,在5.3的基础上增加了VSAN的支持) VSAN 产品主页 http: ...
- 第六次ScrumMeeting博客
第六次ScrumMeeting博客 本次会议于10月31日(二)22时整在3公寓725房间召开,持续15分钟. 与会人员:刘畅.辛德泰.窦鑫泽.张安澜.赵奕.方科栋. 除了汇报任务外,窦鑫泽同学还就前 ...
- python循环结构
while循环 while 条件表达式: 语句块 while语句的条件表达式是循环条件,常用的是关系表达式或者逻辑表达式,语句块是循环执行的语句. n=1 p=1 num=int(input(&quo ...
- 详解Python中的下划线
本文将讨论Python中下划线(_)字符的使用方法.我们将会看到,正如Python中的很多事情,下划线的不同用法大多数(并非所有)只是常用惯例而已. 单下划线(_) 通常情况下,会在以下3种场景中使用 ...