【bzoj2893】征服王
Descripiton
给你一个\(n\)个点\(m\)条边的有向图,有一些点是起始点,有一些点是终止点,一次操作可以从一个起始点开始沿着有向图的边走到一个终止点(中途可以经过终止点),求需要至少多少次操作才能覆盖所有的点,无可行方案输出“no solution"
数据范围:\(t<=10,n <= 1000, m <= 10000\),其中\(t\)为数据组数
Solution
首先肯定要缩点
完了之后重新建图我们就可以先直接判掉无解的情况了,如果说一个点(下面说的点都是缩完之后的点)的入度为\(0\)并且不能作为起点,或者说一个点出度为\(0\)并且不能作为终点那肯定不能走到这个点,所以肯定是无解的
否则一定存在一种方案覆盖所有的点
那现在就变成了一个求有向无环图的可相交最小点覆盖问题了
然后。。不能天真的认为dfs或者大力dp可以直接搞定。。没那么简单qwq
实际上这个有很多种做法,其中比较简洁的一种是有上下界的最小流
具体建图的话就是,我们将一个原图中的一个点拆成两个,\(x\)和\(x'\)
然后\(x\rightarrow x'\)连一条容量下界为\(1\)上界为\(+\infty\)的边,表示每个点至少被经过一次
对于原图中的每条边\((u,v)\),我们建一条\(u'\rightarrow v\)的下界为\(0\)上界为\(+\infty\)的边,表示每条边最少可以不经过
然后跑一遍上下界最小流就好啦,具体一点的话就是建附加源和汇,对于一条容量为\([l,r]\)从\(u\rightarrow v\)的边拆成三条边,附加源\(\rightarrow v\)流量为\(l\),附加汇\(\rightarrow u\)流量为\(l\),\(u\rightarrow v\)流量为\(r-l\),简单说一下理解的话就是前两条边是保证下界,最后一条边是在\([l,r]\)范围内随便流
这样建完图之后因为是要求有源汇的最小流,求解的话就是以附加源汇为起和终跑最大流,跑完了之后再加一条原来的汇\(\rightarrow\)源的\(+\infty\)的边,然后再在残留网络上跑一遍最大流就是答案了
具体的话。。我也不太会证明qwq可以去这篇博客膜拜
然后还有一种做法相对来说会麻烦一点点,就是有一个结论:如果我们按照如下方式建一个二分图:拆点,对于原图中\((u,v)\)的边,在二分图中连\(u\rightarrow v'\),那么原图点数\(n\)-二分图最大匹配数=原图的最小不可相交路径覆盖(其实就是Portal -->bzoj1143懒。。所以晚点再补博了qwq这里先贴一个题目链接)
如果我们再稍微改一下,先对原图用floyd做一次传递闭包,然后如果说两个点\(u,v\)满足\(u\)能够到达\(v\),那么在二分图中连一条\(u\rightarrow v'\)的边,这样用同样的方式计算就是原图的最小可相交路径覆盖了
然后这题的话我们也可以用这种方式来求解,这样就只用普通网络流来跑个匹配,但是之前还需要传递闭包(具体的话dtz说是先拓扑排序再直接大力dp,不过在这题里面时间是\(n^2\)级别的,但是因为\(n=1000\)所以问题不大%%%),大概是这样
第一种做法的代码大概长这个样子
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int N=1010,M=10010,inf=2147483647;
int stok[N],edok[N];
int n,m,t,cntst,cnted;
namespace F{/*{{{*/
struct xxx{
int y,nxt,op,r;
}a[M*10];
queue<int> q;
int lv[N*2],h[N*2];
int tot,S,T,SS,TT;//S和T是附加源汇,SS和TT是原来的源汇
void init(){
tot=-1;
memset(h,-1,sizeof(h));
}
void add1(int x,int y,int r){
//printf("%d %d %d\n",x,y,r);
a[++tot].y=y; a[tot].nxt=h[x]; h[x]=tot; a[tot].r=r;
a[++tot].y=x; a[tot].nxt=h[y]; h[y]=tot; a[tot].r=0;
}
void add(int x,int y,int l,int r){
add1(S,y,l);
add1(x,T,l);
add1(x,y,r-l);
}
bool bfs(){
while (!q.empty()) q.pop();
memset(lv,0,sizeof(lv));
q.push(S); lv[S]=1;
int u,v;
while (!q.empty()){
v=q.front(); q.pop();
for (int i=h[v];i!=-1;i=a[i].nxt){
u=a[i].y;
if (!a[i].r||lv[u]) continue;
lv[u]=lv[v]+1;
q.push(u);
if (u==T) return true;
}
}
return false;
}
int dfs(int v,int o){
if (!o||v==T) return o;
int u,ret=0,flow;
for (int i=h[v];i!=-1;i=a[i].nxt){
u=a[i].y;
if (!a[i].r||lv[u]!=lv[v]+1) continue;
flow=dfs(u,min(o,a[i].r));
if (flow){
o-=flow;
ret+=flow;
a[i].r-=flow;
a[i^1].r+=flow;
if (!o) break;
}
}
if (!ret) lv[v]=-1;
return ret;
}
int dinic(){
int ret=0;
while (bfs()) ret+=dfs(S,inf);
return ret;
}
}/*}}}*/
namespace G{/*{{{*/
struct xxx{
int y,nxt;
}a[M*2];
int h[N],dfn[N],low[N],st[N],id[N];
int Stok[N],Edok[N],ind[N],outd[N];
bool ins[N];
int tot,dfn_t,cnt,top;
void add(int x,int y){a[++tot].y=y; a[tot].nxt=h[x]; h[x]=tot;}
void init(){
memset(h,-1,sizeof(h));
tot=0;
memset(dfn,0,sizeof(dfn));
memset(ind,0,sizeof(ind));
memset(outd,0,sizeof(outd));
memset(ins,false,sizeof(ins));
memset(Stok,false,sizeof(Stok));
memset(Edok,false,sizeof(Edok));
top=0; cnt=0;
}
void tarjan(int x){
int u;
dfn[x]=low[x]=++dfn_t; st[++top]=x; ins[x]=true;
for (int i=h[x];i!=-1;i=a[i].nxt){
u=a[i].y;
if (!dfn[u]){
tarjan(u);
low[x]=min(low[x],low[u]);
}
else if (ins[u])
low[x]=min(low[x],dfn[u]);
}
if (low[x]==dfn[x]){
++cnt; u=st[top];
while (u!=x){
id[u]=cnt;
if (stok[u]) Stok[cnt]=true;
if (edok[u]) Edok[cnt]=true;
ins[u]=false;
u=st[--top];
}
id[x]=cnt;
if (stok[x]) Stok[cnt]=true;
if (edok[x]) Edok[cnt]=true;
ins[x]=false;
--top;
}
}
bool rebuild(){
int u;
dfn_t=0;
for (int i=1;i<=n;++i)
if (dfn[i]==0) tarjan(i);
F::SS=cnt*2+1; F::TT=F::SS+1;
F::S=F::SS+2; F::T=F::SS+3;
for (int i=1;i<=n;++i)
for (int j=h[i];j!=-1;j=a[j].nxt){
u=a[j].y;
if (id[i]!=id[u]){
++ind[id[u]],++outd[id[i]];
F::add(id[i]+cnt,id[u],0,inf);
}
}
for (int i=1;i<=cnt;++i){
F::add(i,i+cnt,1,inf);
if (!ind[i]){
if (!Stok[i]) return false;
F::add(F::SS,i,0,inf);
}
if (!outd[i]){
if (!Edok[i]) return false;
F::add(i+cnt,F::TT,0,inf);
}
}
return true;
}
}/*}}}*/
void solve(){
if (!G::rebuild()){printf("no solution\n");return;}
F::dinic();
F::add(F::TT,F::SS,0,inf);
int ans=F::dinic();
printf("%d\n",ans);
}
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
int x,y;
scanf("%d",&t);
for (int o=1;o<=t;++o){
scanf("%d%d%d%d",&n,&m,&cntst,&cnted);
G::init();
memset(stok,false,sizeof(stok));
memset(edok,false,sizeof(edok));
for (int i=1;i<=cntst;++i)
scanf("%d",&x),stok[x]=true;
for (int i=1;i<=cnted;++i)
scanf("%d",&x),edok[x]=true;
for (int i=1;i<=m;++i){
scanf("%d%d",&x,&y);
if (x!=y) G::add(x,y);
}
F::init();
solve();
}
}
【bzoj2893】征服王的更多相关文章
- BZOJ2893: 征服王
题解: 裸的上下界最小流是有问题的.因为在添加了附加源之后求出来的流,因为s,t以及其它点地位都是平等的.如果有一个流经过了s和t,那么总可以认为这个流是从s出发到t的满足题意的流. 既然可能存在s到 ...
- BZOJ2893:征服王(费用流)
Description 虽然春希将信息传递给了雪菜,但是雪菜却好像完全不认得春希了.心急如焚的春希打开了第二世代机能,对雪菜的脑内芯片进行了直连-hack. 进入到雪菜内部的春希发现(这什么玩意..) ...
- 【BZOJ-2893】征服王 最大费用最大流(带下界最小流)
2893: 征服王 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 156 Solved: 48[Submit][Status][Discuss] D ...
- SDOI2017 Round1
SDOI2017 Round1 在回去的车上写的 cnblog的markdown貌似有bug,空行都没有了 Day -several [清明节] 没想到在省选之前还会有一次放假 放假前一天晚上走到校门 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- 安晓辉大神的感悟:如果你发现了自己的学习模式,愿意学并且能坚持,我觉得没什么能阻挡你征服软件世界的脚步(对于开发人员来讲,最大的风险是:在职业规划上没有延续性地乱跳槽。时刻要牢记在心的:培养自己的稀缺性) good
从技术支持中途转战软件开发,如今从事编程工作已十多有余,2014年CSDN博文大赛编程语言组冠军.CSDN Qt论坛的版主安晓辉老师从今天开始,坐镇CSDN社区问答栏目的 第十四期,届时会接受广大网友 ...
- 彻底征服 Spring AOP 之 理论篇
基本知识 其实, 接触了这么久的 AOP, 我感觉, AOP 给人难以理解的一个关键点是它的概念比较多, 而且坑爹的是, 这些概念经过了中文翻译后, 变得面目全非, 相同的一个术语, 在不同的翻译下, ...
- BZOJ 4008 【HNOI2015】 亚瑟王
题目链接:亚瑟王 这道题好神啊TAT--果然我的dp还是太弱了-- 一开始想了半天的直接dp求期望,结果最后WA的不知所云-- 最后去翻了题解,然后发现先算概率,再求期望--新姿势\(get\). 我 ...
- Bzoj4008 [HNOI2015]亚瑟王
Time Limit: 20 Sec Memory Limit: 512 MBSec Special Judge Submit: 1009 Solved: 605[Submit][Status] ...
随机推荐
- 人脸辨识,用树莓派Raspberry Pi实现舵机云台追踪脸孔
影像辨识作为近年最热门的专业技术之一,广泛用于智慧监视器.车电监控.智慧工厂.生物医疗电子等等:其中,人脸辨识是一个很重要的部分,网络上已经有相当多的资源可供下载使用:于是我们使用舵机云台作为镜头旋转 ...
- 音频分析框架pyAudioAnalysis文档
“ pyAudioAnalysis是一个非常好用且强大的音频分析开源工具,能实现音频的特征提取.分类和回归模型的训练和执行,以及其他一些实用的功能.此外,本文档并非直译,也有部分比较简略,可以结合源码 ...
- 王者荣耀交流协会Beta发布文案美工展示博客
logo: 我们的logo是蓝底白字,非常简洁大气的设计感,上面印有我们的软件名称,更好的直观的彰显了我们的主题.我们的软件就是要迎合使用者,给使用者更加方便快捷的工作体验,更好的衡量自己的时间分配. ...
- 20172329 2018-2019《Java软件结构与数据结构》第一周学习总结
2018-2019-20172329 <Java软件结构与数据结构>第一周学习总结 在这学期就已经大二了,也已经步入了学习专业课的核心时间,在这个阶段,我们应该了解自己的学习情况,针对自己 ...
- 机器学习实战第二章----KNN
tile的使用方法 tile(A,n)的功能是把A数组重复n次(可以在列方向,也可以在行方向) argsort()函数 argsort()函数返回的是数组中值从大到小的索引值 dict.get()函数 ...
- struts2 jsp的session取值 if判断
model有个类user,其中有个string属性direction(方向) 在LoginAction中 登入成功 就 ActionContext actionContext = ActionCont ...
- SGU 181 X-Sequence(一题比较水的求模找规律)
E - X-Sequence Time Limit:500MS Memory Limit:4096KB 64bit IO Format:%I64d & %I64u Submit ...
- ImportError: No module named examples.tutorials.mnist
Traceback (most recent call last): File "nearest_neighbor.py", line 14, in <module> ...
- 0302IT行业虽吃香,能完全享受这块“香"的也很难
面对现今严峻的就业形势,越来越多的人希望通过职业技能培训或者学历提升来提高自己的综合技能以便能够顺利地应聘到自己理想中的工作. 在2014年十大最热门行业和职业排行榜中IT行业最吃香.在十大行业里,I ...
- CNN误差反传时旋转卷积核的简明分析(转)
CNN(卷积神经网络)的误差反传(error back propagation)中有一个非常关键的的步骤就是将某个卷积(Convolve)层的误差传到前一层的池化(Pool)层上,因为在CNN中是2D ...