https://vjudge.net/problem/UVA-10375

题意:

输入整数p,q,r,s,计算C(p,q)/C(r,s)。

思路:

先打个素数表,然后用一个数组e来保存每个素数所对应的指数,最后相乘。

 #include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
using namespace std; const int maxn=+; int primes[maxn];
int e[maxn];
int vis[maxn];
int p,q,r,s;
int cnt; void get_primes()
{
memset(vis,,sizeof(vis));
int m=sqrt(maxn+0.5);
for(int i=;i<=m;++i) if(!vis[i])
for(int j=i*i;j<=maxn;j+=i) vis[j]=;
cnt=;
for(int i=;i<=maxn;++i){
if(!vis[i])
primes[cnt++]=i;
}
} void add_integer(int n,int d )
{
for(int i=;i<cnt;i++)
{
while(n%primes[i]==)
{
n/=primes[i];
e[i]+=d;
}
if(n==) break;
}
} void update_e(int n,int d)
{
for(int i=;i<=n;i++)
add_integer(i,d);
} int main()
{
//freopen("D:\\input.txt","r",stdin);
get_primes();
while(~scanf("%d%d%d%d",&p,&q,&r,&s))
{
memset(e,,sizeof(e));
update_e(p,);
update_e(q,-);
update_e(p-q,-);
update_e(s,);
update_e(r-s,);
update_e(r,-);
double ans=;
for(int i=;i<cnt;i++)
{
ans*=pow(primes[i],e[i]);
}
printf("%.5f\n",ans);
}
return ;
}

UVa 10375 选择与除法(唯一分解定理)的更多相关文章

  1. Uva 10375 选择与除法 唯一分解定理

    题目链接:https://vjudge.net/contest/156903#problem/E 题意:已知 求:C(p,q)/C(r,s) 其中p,q,r,s都是10^4,硬算是肯定超数据类型的. ...

  2. UVA - 10375 Choose and divide[唯一分解定理]

    UVA - 10375 Choose and divide Choose and divide Time Limit: 1000MS   Memory Limit: 65536K Total Subm ...

  3. UVA.10791 Minimum Sum LCM (唯一分解定理)

    UVA.10791 Minimum Sum LCM (唯一分解定理) 题意分析 也是利用唯一分解定理,但是要注意,分解的时候要循环(sqrt(num+1))次,并要对最后的num结果进行判断. 代码总 ...

  4. UVa10375:选择与除法(唯一分解定理)

    The binomial coefficient C(m,n) is defined as Given four natural numbers p, q, r, and s, compute the th ...

  5. UVA 10375 Choose and divide【唯一分解定理】

    题意:求C(p,q)/C(r,s),4个数均小于10000,答案不大于10^8 思路:根据答案的范围猜测,不需要使用高精度.根据唯一分解定理,每一个数都可以分解成若干素数相乘.先求出10000以内的所 ...

  6. Irrelevant Elements UVA - 1635 二项式定理+组合数公式+素数筛+唯一分解定理

    /** 题目:Irrelevant Elements UVA - 1635 链接:https://vjudge.net/problem/UVA-1635 题意:給定n,m;題意抽象成(a+b)^(n- ...

  7. UVa 10791 Minimum Sum LCM【唯一分解定理】

    题意:给出n,求至少两个正整数,使得它们的最小公倍数为n,且这些整数的和最小 看的紫书--- 用唯一分解定理,n=(a1)^p1*(a2)^p2---*(ak)^pk,当每一个(ak)^pk作为一个单 ...

  8. 唯一分解定理(以Minimun Sum LCM UVa 10791为例)

    唯一分解定理是指任何正整数都可以分解为一些素数的幂之积,即任意正整数n=a1^p1*a2^p2*...*ai^pi:其中ai为任意素数,pi为任意整数. 题意是输入整数n,求至少2个整数,使得它们的最 ...

  9. Uva 10791 最小公倍数的最小和 唯一分解定理

    题目链接:https://vjudge.net/contest/156903#problem/C 题意:给一个数 n ,求至少 2个正整数,使得他们的最小公倍数为 n ,而且这些数之和最小. 分析: ...

随机推荐

  1. 真机远程页面调试工具spy-debugger 3.x:集成weinre+AnyProxy,页面调试+抓包。调试生产HTTPS页面。

    .页面调试+抓包 2.操作简单 3.支持HTTPS. 4.spy-debugger内部集成了weinre.node-mitmproxy.AnyProxy. 5.自动忽略原生App发起的https请求, ...

  2. URL上的中文编码

    参考:http://www.chinaz.com/web/2013/0226/293639.shtml 一 URL上拼接中文会进行编码 在URL上拼接中文时,比如www.abc.com?season= ...

  3. html to pdf小工具,支持evernote导出的html和firefox插件scrapbook

    周末花了一天时间用wpf写了一个html转换为pdf的小工具. 已经在win7 32位 和win8 64两台机器上测试,目前基本可用,特拿来分享. 程序下载地址:http://pan.baidu.co ...

  4. 【BZOJ4282】慎二的随机数列 乱搞

    [BZOJ4282]慎二的随机数列 Description 间桐慎二是间桐家著名的废柴,有一天,他在学校随机了一组随机数列, 准备使用他那强大的人工智能求出其最长上升子序列,但是天有不测风云,人有旦夕 ...

  5. linux 程序启动与停止管理脚本

    公司接了一个第三方的系统,基于linux写的几个程序,一共有9个部件,第三方没有给脚本,每次启动或停止都得一个一个手工去停止或修改.......,这里稍微鄙视下. 没办法,求人还不如自己动手写, 需求 ...

  6. PHP对象在内存中的分配

    对像在PHP 里面和整型.浮点型一样,也是一种数据类,都是存储不同类型数据用的, 在运行的时候都要加载到内存中去用,那么对象在内存里面是怎么体现的呢?内存从逻辑上 说大体上是分为4 段,栈空间段.堆空 ...

  7. const V.S readonly

    先上两个例子: ; ; static void Main(string[] args) { Console.WriteLine("A is {0},B is {1}", A, B) ...

  8. Android之上下文context

    Context,中文直译为“上下文”,SDK中对其说明如下: 1.它描述的是一个应用程序环境的信息,即上下文. 2.该类是一个抽象(abstract class)类,Android提供了该抽象类的具体 ...

  9. sql server学习路径地址

    联机丛书2005:https://docs.microsoft.com/zh-cn/previous-versions/sql/sql-server-2005/ms130214(v=sql.90) 联 ...

  10. Shell特殊变量介绍与实践 $0

    2.$0特殊变量的作用及变量实践$0的作用为取出执行脚本的名称(包括路径) ,下面是该功能的实践.范例4-4:获取脚本的名称及路径. [root@salt-client- sh1]# cat n1.s ...