题目链接:棘手的操作

  网上的题解大部分都是在线用可并堆艹……但是树高严格\(\log\)的可并堆我不会啊……还是离线大法好……

  我们可以先把所有的合并操作用并查集给处理好,把得到的森林记录下来。然后,我们对这个森林进行\(dfs\),就可以得到一个\(dfs\)序,那么我们把所有点按照\(dfs\)序重标号,每个联通块就成为了一段区间了。然后就可以直接用线段树维护了。

  注意一个细节:在\(dfs\)的时候对于一个点连出去的所有边,要优先走先连的边,这样才能保证联通块始终是一段区间。

  下面贴代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define maxn 300010
#define INF 2147483647 using namespace std;
typedef long long llg; struct data{
int op,x,y;
}s[maxn];
int head[maxn],next[maxn],to[maxn],tt,du[maxn];
int fa[maxn],n,m,a[maxn],le[maxn],ri[maxn],b[maxn];
int maxv[maxn<<2],addv[maxn<<2],L,R,z,_max,_add;
char ss[20]; int getint(){
int w=0;bool q=0;
char c=getchar();
while((c>'9'||c<'0')&&c!='-') c=getchar();
if(c=='-') c=getchar(),q=1;
while(c>='0'&&c<='9') w=w*10+c-'0',c=getchar();
return q?-w:w;
} int find(int x){return fa[fa[x]]==fa[x]?fa[x]:fa[x]=find(fa[x]);}
void link(int x,int y){du[x]++;to[++tt]=y;next[tt]=head[x];head[x]=tt;}
void dfs(int u){
le[u]=++tt;
int *d=new int[du[u]];
for(int i=head[u],j=0;i;i=next[i]) d[j++]=to[i];
for(int i=du[u];i;i--) dfs(d[i-1]);
} void build(int u,int l,int r){
int lc=u<<1,lv=u<<1|1,mid=(l+r)>>1;
if(l==r){maxv[u]=b[l];return;}
build(lc,l,mid); build(lv,mid+1,r);
maxv[u]=max(maxv[lc],maxv[lv]);
} void add(int u,int l,int r){
int lc=u<<1,lv=u<<1|1,mid=(l+r)>>1;
if(l>=L && r<=R){maxv[u]+=z,addv[u]+=z;return;}
if(L<=mid) add(lc,l,mid);
if(R>mid) add(lv,mid+1,r);
maxv[u]=max(maxv[lc],maxv[lv])+addv[u];
} void query(int u,int l,int r){
int lc=u<<1,lv=u<<1|1,mid=(l+r)>>1;
if(l>=L && r<=R){_max=max(_max,maxv[u]+_add);return;}
_add+=addv[u];
if(L<=mid) query(lc,l,mid);
if(R>mid) query(lv,mid+1,r);
_add-=addv[u];
} void work(){
_max=-INF; query(1,1,n);
printf("%d\n",_max);
} int main(){
File("a");
n=getint();
for(int i=1;i<=n;i++) a[i]=getint(),fa[i]=i;
m=getint();
for(int i=1,u,v;i<=m;i++){
scanf("%s",ss); if(!ss[1]) ss[1]='1';
s[i].op=(ss[0]=='A')+(ss[0]=='F')*4+ss[1]-'0';
if(s[i].op<7) s[i].x=getint();
if(s[i].op<4) s[i].y=getint();
if(s[i].op==1){
u=find(s[i].x),v=find(s[i].y);
if(u!=v) fa[u]=v,link(v,u);
}
}
tt=0;
for(int i=1;i<=n;i++) if(find(i)==i) dfs(i);
for(int i=1;i<=n;i++) b[le[i]]=a[i],ri[i]=le[i];
for(int i=1;i<=n;i++) fa[i]=i; build(1,1,n);
for(int i=1,u,v;i<=m;i++){
u=s[i].x; z=v=s[i].y;
if(s[i].op==1){
u=find(u),v=find(v);
if(u!=v) fa[u]=v,ri[v]=ri[u];
}
else if(s[i].op==2) L=R=le[u],add(1,1,n);
else if(s[i].op==3) u=find(u),L=le[u],R=ri[u],add(1,1,n);
else if(s[i].op==4) z=u,L=1,R=n,add(1,1,n);
else if(s[i].op==5) L=R=le[u],work();
else if(s[i].op==6) u=find(u),L=le[u],R=ri[u],work();
else printf("%d\n",maxv[1]);
}
return 0;
}

  UPD 3.2:左偏树做法

  其实无须树高严格\(\log\),左偏树就够了

  网上有的题解是每次用\(O(树高)\)的时间统计影响这个点的所有标记,可并堆用的是左偏树= =

  但是这样复杂度是不对的,因为左偏树的树高可以达到\(O(n)\)级别

  然后就需要考虑一种别的解法

  既然不能每次暴力统计到根的所有标记,我们可以考虑把标记永久化了,固定在根节点,这样每次就只需要查询根节点的标记就可以了。但是这样的话合并的时候会出问题,两个堆无法直接合并。不要慌,我们只需要把\(size\)较小的那个堆里面所有的元素暴力修改掉就可以直接合并了。再用个全局的堆维护一下全局最大值。总复杂度\(O(n\log n)\)。

  顺便Orz告诉我此解法的xlightgod大爷Orz

  PS:我写的是斜堆,不是左偏树

  下面贴代码:

#include<bits/stdc++.h>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define maxn 300010 using namespace std;
typedef long long llg; struct Queue{
priority_queue<int> q1,q2;
void insert(int x){q1.push(x);}
void erase(int x){q2.push(x);}
int top(){
while(!q2.empty() && q1.top()==q2.top()) q1.pop(),q2.pop();
return q1.top();
}
}q;
int n,rt[maxn],siz[maxn],fa[maxn],addv[maxn];
int ff[maxn],s[maxn][2],val[maxn],m,z,_add;
char ss[20]; int getint(){
int w=0;bool q=0;
char c=getchar();
while((c>'9'||c<'0')&&c!='-') c=getchar();
if(c=='-') c=getchar(),q=1;
while(c>='0'&&c<='9') w=w*10+c-'0',c=getchar();
return q?-w:w;
} int find(int x){return ff[ff[x]]==ff[x]?ff[x]:ff[x]=find(ff[x]);}
int merge(int u,int v){
if(!u || !v) return u+v;
if(val[u]<val[v]) swap(u,v);
fa[s[u][1]=merge(s[u][1],v)]=u;
swap(s[u][0],s[u][1]); return u;
} void del(int u){
int x=find(u),y=fa[u];
if(rt[x]==u) fa[rt[x]=merge(s[u][0],s[u][1])]=0;
else fa[s[y][u==s[y][1]]=merge(s[u][0],s[u][1])]=y;
} void dfs(int u){
val[u]+=z;
if(s[u][0]) dfs(s[u][0]);
if(s[u][1]) dfs(s[u][1]);
} int main(){
File("a");
n=getint();
for(int i=1;i<=n;i++){
ff[i]=rt[i]=i,siz[i]=1;
q.insert(val[i]=getint());
}
m=getint();
while(m--){
int x,y,u;
scanf("%s",ss+1);
if(ss[1]=='U'){
x=find(getint()),y=find(getint());
if(siz[x]>siz[y]) swap(x,y);
if(x!=y){
q.erase(min(val[rt[x]]+addv[x],val[rt[y]]+addv[y]));
z=addv[x]-addv[y],dfs(rt[x]); siz[y]+=siz[x];
ff[x]=y; rt[y]=merge(rt[x],rt[y]);
}
}
else if(ss[1]=='A'){
x=getint();
if(ss[2]=='1' || ss[2]=='2'){
u=find(x); y=getint();
q.erase(val[rt[u]]+addv[u]);
if(ss[2]=='1'){
del(x); val[x]+=y;
s[x][0]=s[x][1]=fa[x]=0;
rt[u]=merge(rt[u],x);
}
else addv[u]+=y;
q.insert(val[rt[u]]+addv[u]);
}
else if(ss[2]=='3') _add+=x;
}
else{
if(ss[2]=='3') printf("%d\n",q.top()+_add);
else{
x=getint(); u=find(x);
if(ss[2]=='1') printf("%d\n",val[x]+addv[u]+_add);
else if(ss[2]=='2') printf("%d\n",val[rt[u]]+addv[u]+_add);
}
}
}
return 0;
}

BZOJ 2333 【SCOI2011】 棘手的操作的更多相关文章

  1. BZOJ 2333: [SCOI2011]棘手的操作

    题目描述 真的是个很棘手的操作.. 注意每删除一个点,就需要clear一次. #include<complex> #include<cstdio> using namespac ...

  2. BZOJ 2333: [SCOI2011]棘手的操作 可并堆 左偏树 set

    https://www.lydsy.com/JudgeOnline/problem.php?id=2333 需要两个结构分别维护每个连通块的最大值和所有连通块最大值中的最大值,可以用两个可并堆实现,也 ...

  3. BZOJ 2333 SCOI2011 棘手的操作 并查集+可并堆

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2333 ..题意概述就不写了,各位老爷如果是看着玩的可以去搜一下,如果是做题找来的也知道题干 ...

  4. bzoj 2333 [SCOI2011]棘手的操作 —— 可并堆

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2333 稍微复杂,参考了博客:http://hzwer.com/5780.html 用 set ...

  5. BZOJ 2333 [SCOI2011]棘手的操作 (可并堆)

    码农题.. 很显然除了两个全局操作都能用可并堆完成 全局最大值用个multiset记录,每次合并时搞一搞就行了 注意使用multiset删除元素时 如果直接delete一个值,会把和这个值相同的所有元 ...

  6. 2333: [SCOI2011]棘手的操作[写不出来]

    2333: [SCOI2011]棘手的操作 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1979  Solved: 772[Submit][Stat ...

  7. 2333: [SCOI2011]棘手的操作[离线线段树]

    2333: [SCOI2011]棘手的操作 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2325  Solved: 909[Submit][Stat ...

  8. 2333: [SCOI2011]棘手的操作[我不玩了]

    2333: [SCOI2011]棘手的操作 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1979  Solved: 772[Submit][Stat ...

  9. 【BZOJ】2333: [SCOI2011]棘手的操作

    http://www.lydsy.com/JudgeOnline/problem.php?id=2333 题意: 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i], ...

  10. 【BZOJ 2333 】[SCOI2011]棘手的操作(离线+线段树)

    2333: [SCOI2011]棘手的操作 Description 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边 ...

随机推荐

  1. Android自定义类似ProgressDialog效果的Dialog

    Android自定义类似ProgressDialog效果的Dialog. 方法如下: 1.首先准备两张自己要定义成哪样子的效果的图片和背景图片(也可以不要背景). 如我要的效果: 2.定义loadin ...

  2. Oracle入门笔记 ——启动进阶

    1.2 进阶内容: 两个概念:SCN 和 检查点  1.SCN的定义:     system change member ,系统改变号,是数据库中非常重要的一个数据结构.     SCN 用以标示数据 ...

  3. netty之LengthFieldBasedFrameDecoder解码器

    官方api:http://netty.io/4.1/api/io/netty/handler/codec/LengthFieldBasedFrameDecoder.html package com.e ...

  4. 边的双联通+缩点+LCA(HDU3686)

    Traffic Real Time Query System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  5. 170609、Nginx配置文件详细说明

    在此记录下Nginx服务器nginx.conf的配置文件说明, 部分注释收集与网络. #运行用户 user www-data; #启动进程,通常设置成和cpu的数量相等 worker_processe ...

  6. APM最佳实践: 诊断平安城市视频网性能问题

    前言: 平安城市已经是一个关系你我他的民生工程,但由于本身系统的复杂性,给运维工作带来了极大的挑战.如何保障摄像头在线率?如何在系统中找到视频系统故障的问题所在?在我们某一次项目经历中,APM在发现问 ...

  7. 《图解HTTP》书摘

    图解HTTP 上野宣.于均良 1.3 网络基础 TCP/IP 2016-03-03 相互通信,双方就必须基于相同的方法.比如,如何探测到通信目标.由哪一边先发起通信.使用哪种语言进行通信.怎样结束通信 ...

  8. iptables综述

    1 概述 如下图所示,iptables共有Filter,Nat,Mangle和RAW共四个table,每个table还有若干个chain,每个chain中还包含若干个rule 1.1 Filter t ...

  9. Java-idea-PMD源文件级别潜在bug查看

    一.概述 PMD(Project Manager Design)是一种开源分析Java代码错误的工具.与其他分析工具不同的是,PMD通过静态分析获知代码错误.也就是说,在不运行Java程序的情况下报告 ...

  10. [SharpMap] 屏幕坐标和Map坐标转换

    1. SharpMap中屏幕坐标和地图Map坐标转换: using System.Drawing; using GeoAPI.Geometries; namespace SharpMap.Utilit ...