题目链接:棘手的操作

  网上的题解大部分都是在线用可并堆艹……但是树高严格\(\log\)的可并堆我不会啊……还是离线大法好……

  我们可以先把所有的合并操作用并查集给处理好,把得到的森林记录下来。然后,我们对这个森林进行\(dfs\),就可以得到一个\(dfs\)序,那么我们把所有点按照\(dfs\)序重标号,每个联通块就成为了一段区间了。然后就可以直接用线段树维护了。

  注意一个细节:在\(dfs\)的时候对于一个点连出去的所有边,要优先走先连的边,这样才能保证联通块始终是一段区间。

  下面贴代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define maxn 300010
#define INF 2147483647 using namespace std;
typedef long long llg; struct data{
int op,x,y;
}s[maxn];
int head[maxn],next[maxn],to[maxn],tt,du[maxn];
int fa[maxn],n,m,a[maxn],le[maxn],ri[maxn],b[maxn];
int maxv[maxn<<2],addv[maxn<<2],L,R,z,_max,_add;
char ss[20]; int getint(){
int w=0;bool q=0;
char c=getchar();
while((c>'9'||c<'0')&&c!='-') c=getchar();
if(c=='-') c=getchar(),q=1;
while(c>='0'&&c<='9') w=w*10+c-'0',c=getchar();
return q?-w:w;
} int find(int x){return fa[fa[x]]==fa[x]?fa[x]:fa[x]=find(fa[x]);}
void link(int x,int y){du[x]++;to[++tt]=y;next[tt]=head[x];head[x]=tt;}
void dfs(int u){
le[u]=++tt;
int *d=new int[du[u]];
for(int i=head[u],j=0;i;i=next[i]) d[j++]=to[i];
for(int i=du[u];i;i--) dfs(d[i-1]);
} void build(int u,int l,int r){
int lc=u<<1,lv=u<<1|1,mid=(l+r)>>1;
if(l==r){maxv[u]=b[l];return;}
build(lc,l,mid); build(lv,mid+1,r);
maxv[u]=max(maxv[lc],maxv[lv]);
} void add(int u,int l,int r){
int lc=u<<1,lv=u<<1|1,mid=(l+r)>>1;
if(l>=L && r<=R){maxv[u]+=z,addv[u]+=z;return;}
if(L<=mid) add(lc,l,mid);
if(R>mid) add(lv,mid+1,r);
maxv[u]=max(maxv[lc],maxv[lv])+addv[u];
} void query(int u,int l,int r){
int lc=u<<1,lv=u<<1|1,mid=(l+r)>>1;
if(l>=L && r<=R){_max=max(_max,maxv[u]+_add);return;}
_add+=addv[u];
if(L<=mid) query(lc,l,mid);
if(R>mid) query(lv,mid+1,r);
_add-=addv[u];
} void work(){
_max=-INF; query(1,1,n);
printf("%d\n",_max);
} int main(){
File("a");
n=getint();
for(int i=1;i<=n;i++) a[i]=getint(),fa[i]=i;
m=getint();
for(int i=1,u,v;i<=m;i++){
scanf("%s",ss); if(!ss[1]) ss[1]='1';
s[i].op=(ss[0]=='A')+(ss[0]=='F')*4+ss[1]-'0';
if(s[i].op<7) s[i].x=getint();
if(s[i].op<4) s[i].y=getint();
if(s[i].op==1){
u=find(s[i].x),v=find(s[i].y);
if(u!=v) fa[u]=v,link(v,u);
}
}
tt=0;
for(int i=1;i<=n;i++) if(find(i)==i) dfs(i);
for(int i=1;i<=n;i++) b[le[i]]=a[i],ri[i]=le[i];
for(int i=1;i<=n;i++) fa[i]=i; build(1,1,n);
for(int i=1,u,v;i<=m;i++){
u=s[i].x; z=v=s[i].y;
if(s[i].op==1){
u=find(u),v=find(v);
if(u!=v) fa[u]=v,ri[v]=ri[u];
}
else if(s[i].op==2) L=R=le[u],add(1,1,n);
else if(s[i].op==3) u=find(u),L=le[u],R=ri[u],add(1,1,n);
else if(s[i].op==4) z=u,L=1,R=n,add(1,1,n);
else if(s[i].op==5) L=R=le[u],work();
else if(s[i].op==6) u=find(u),L=le[u],R=ri[u],work();
else printf("%d\n",maxv[1]);
}
return 0;
}

  UPD 3.2:左偏树做法

  其实无须树高严格\(\log\),左偏树就够了

  网上有的题解是每次用\(O(树高)\)的时间统计影响这个点的所有标记,可并堆用的是左偏树= =

  但是这样复杂度是不对的,因为左偏树的树高可以达到\(O(n)\)级别

  然后就需要考虑一种别的解法

  既然不能每次暴力统计到根的所有标记,我们可以考虑把标记永久化了,固定在根节点,这样每次就只需要查询根节点的标记就可以了。但是这样的话合并的时候会出问题,两个堆无法直接合并。不要慌,我们只需要把\(size\)较小的那个堆里面所有的元素暴力修改掉就可以直接合并了。再用个全局的堆维护一下全局最大值。总复杂度\(O(n\log n)\)。

  顺便Orz告诉我此解法的xlightgod大爷Orz

  PS:我写的是斜堆,不是左偏树

  下面贴代码:

#include<bits/stdc++.h>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define maxn 300010 using namespace std;
typedef long long llg; struct Queue{
priority_queue<int> q1,q2;
void insert(int x){q1.push(x);}
void erase(int x){q2.push(x);}
int top(){
while(!q2.empty() && q1.top()==q2.top()) q1.pop(),q2.pop();
return q1.top();
}
}q;
int n,rt[maxn],siz[maxn],fa[maxn],addv[maxn];
int ff[maxn],s[maxn][2],val[maxn],m,z,_add;
char ss[20]; int getint(){
int w=0;bool q=0;
char c=getchar();
while((c>'9'||c<'0')&&c!='-') c=getchar();
if(c=='-') c=getchar(),q=1;
while(c>='0'&&c<='9') w=w*10+c-'0',c=getchar();
return q?-w:w;
} int find(int x){return ff[ff[x]]==ff[x]?ff[x]:ff[x]=find(ff[x]);}
int merge(int u,int v){
if(!u || !v) return u+v;
if(val[u]<val[v]) swap(u,v);
fa[s[u][1]=merge(s[u][1],v)]=u;
swap(s[u][0],s[u][1]); return u;
} void del(int u){
int x=find(u),y=fa[u];
if(rt[x]==u) fa[rt[x]=merge(s[u][0],s[u][1])]=0;
else fa[s[y][u==s[y][1]]=merge(s[u][0],s[u][1])]=y;
} void dfs(int u){
val[u]+=z;
if(s[u][0]) dfs(s[u][0]);
if(s[u][1]) dfs(s[u][1]);
} int main(){
File("a");
n=getint();
for(int i=1;i<=n;i++){
ff[i]=rt[i]=i,siz[i]=1;
q.insert(val[i]=getint());
}
m=getint();
while(m--){
int x,y,u;
scanf("%s",ss+1);
if(ss[1]=='U'){
x=find(getint()),y=find(getint());
if(siz[x]>siz[y]) swap(x,y);
if(x!=y){
q.erase(min(val[rt[x]]+addv[x],val[rt[y]]+addv[y]));
z=addv[x]-addv[y],dfs(rt[x]); siz[y]+=siz[x];
ff[x]=y; rt[y]=merge(rt[x],rt[y]);
}
}
else if(ss[1]=='A'){
x=getint();
if(ss[2]=='1' || ss[2]=='2'){
u=find(x); y=getint();
q.erase(val[rt[u]]+addv[u]);
if(ss[2]=='1'){
del(x); val[x]+=y;
s[x][0]=s[x][1]=fa[x]=0;
rt[u]=merge(rt[u],x);
}
else addv[u]+=y;
q.insert(val[rt[u]]+addv[u]);
}
else if(ss[2]=='3') _add+=x;
}
else{
if(ss[2]=='3') printf("%d\n",q.top()+_add);
else{
x=getint(); u=find(x);
if(ss[2]=='1') printf("%d\n",val[x]+addv[u]+_add);
else if(ss[2]=='2') printf("%d\n",val[rt[u]]+addv[u]+_add);
}
}
}
return 0;
}

BZOJ 2333 【SCOI2011】 棘手的操作的更多相关文章

  1. BZOJ 2333: [SCOI2011]棘手的操作

    题目描述 真的是个很棘手的操作.. 注意每删除一个点,就需要clear一次. #include<complex> #include<cstdio> using namespac ...

  2. BZOJ 2333: [SCOI2011]棘手的操作 可并堆 左偏树 set

    https://www.lydsy.com/JudgeOnline/problem.php?id=2333 需要两个结构分别维护每个连通块的最大值和所有连通块最大值中的最大值,可以用两个可并堆实现,也 ...

  3. BZOJ 2333 SCOI2011 棘手的操作 并查集+可并堆

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2333 ..题意概述就不写了,各位老爷如果是看着玩的可以去搜一下,如果是做题找来的也知道题干 ...

  4. bzoj 2333 [SCOI2011]棘手的操作 —— 可并堆

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2333 稍微复杂,参考了博客:http://hzwer.com/5780.html 用 set ...

  5. BZOJ 2333 [SCOI2011]棘手的操作 (可并堆)

    码农题.. 很显然除了两个全局操作都能用可并堆完成 全局最大值用个multiset记录,每次合并时搞一搞就行了 注意使用multiset删除元素时 如果直接delete一个值,会把和这个值相同的所有元 ...

  6. 2333: [SCOI2011]棘手的操作[写不出来]

    2333: [SCOI2011]棘手的操作 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1979  Solved: 772[Submit][Stat ...

  7. 2333: [SCOI2011]棘手的操作[离线线段树]

    2333: [SCOI2011]棘手的操作 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2325  Solved: 909[Submit][Stat ...

  8. 2333: [SCOI2011]棘手的操作[我不玩了]

    2333: [SCOI2011]棘手的操作 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1979  Solved: 772[Submit][Stat ...

  9. 【BZOJ】2333: [SCOI2011]棘手的操作

    http://www.lydsy.com/JudgeOnline/problem.php?id=2333 题意: 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i], ...

  10. 【BZOJ 2333 】[SCOI2011]棘手的操作(离线+线段树)

    2333: [SCOI2011]棘手的操作 Description 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边 ...

随机推荐

  1. web站点检查简易shell脚本

    1.web样式 <h4>THE STATUS OF RS:</h4> <meta http-equiv="> <table border=" ...

  2. flask的session用法2

    from flask import Flask, session, redirect, url_for, escape, request app = Flask(__name__) @app.rout ...

  3. 去掉chrome、safari input或textarea在得到焦点时出现黄色边框的方法

    1.去掉chrome.safari input或textarea在得到焦点时出现黄色边框的方法 input{ outline:0;} 2.去掉chrome.safari textarea右下角可拖动鼠 ...

  4. stark - filter、pop、总结

    一.filter 效果图 知识点 1.配置得显示Filter,不配置就不显示了 list_filter = ['title','publish', 'authors'] 2.前端显示 后端返回 字典 ...

  5. D. Babaei and Birthday Cake---cf629D(LIS线段树优化)

    题目链接:http://codeforces.com/problemset/problem/629/D 题意就是现有n个蛋糕,蛋糕的形状是圆柱体,每个蛋糕的体积就是圆柱体的体积,每个蛋糕的编号是1-- ...

  6. Day24-26 项目练习(图书商城)

    图书商城 环境搭建 导入原型 用户模块 分类模块 图书模块 购物车模块 订单模块   2 功能分析 前台 用户模块: 注册 激活 登录 退出 分类模块: 查看所有分类 图书模块: 查询所有图书 按分类 ...

  7. centos7 python3 安装

    mkdir /usr/python3.5 tar -xf Python-3.5.1.tgz cd Python-3.5.1 ./configure --prefix=/usr/python3.5 ma ...

  8. 【手机自动化测试】monkey测试

    1             概述 Monkey测试是Android自动化测试的一种手段.Monkey测试本身非常简单,就是模拟用户的按键输入,触摸屏输入,手势输入等,看设备多长时间会出异常. 当Mon ...

  9. 第1章 1.8计算机网络概述--OSI参考模型和网络排错

    OSI参考模型的网络排错: 每一层都为上一层提供服务. 如果网络出故障了,应该从底层向高层一层一层的查. OSI参考模型排错指导:(排错原则:自下而上.终极大招ping命令) 1.物理层故障: ①查看 ...

  10. React Native教程

    React Native 中文网  http://reactnative.cn/ 相关资料======================= React-Native学习指南 https://github ...