题面:P4137 Rmq Problem / mex

题解:先莫队排序一波,然后对权值进行分块,找出第一个没有填满的块,直接for一遍找答案。

除了bzoj3339以外,另外两道题Ai范围都是1e9。显然最劣情况下答案是N,所以大于N的Ai都直接无视就可以。

由于求的是最小的自然数,自然数包括0,所以要额外处理一下含有0的块。我这里是直接把0拖出来放在第0块了。

代码:

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
inline int rd(){
int f=,x=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return f*x;
}
const int maxn=,maxm=,max_block=;
int N,M,A[maxn],l,r,block,Ans[maxm],vis[maxn],cnt[max_block],num,belong[maxn];
struct Q{
int id,l,r;
}q[maxm];
inline bool cmp(const Q&a,const Q&b){
if(belong[a.l]==belong[b.l])return a.r<b.r;
return a.l<b.l;
}
inline void Add(int x){
if(x<=N){
if(vis[x]==)cnt[belong[x]]++;
vis[x]++;
}
return;
}
inline void Del(int x){
if(x<=N){
vis[x]--;
if(vis[x]==)cnt[belong[x]]--;
}
return;
}
int main(){
N=rd();M=rd();
block=sqrt(N);
num=N/block;
if(N%block)num++;
for(int i=;i<=N;i++){
A[i]=rd();
belong[i]=(i-)/block+;
}
belong[]=;
for(int i=;i<=M;i++){
q[i].id=i;
q[i].l=rd();
q[i].r=rd();
}
sort(q+,q+M+,cmp);
l=;r=;
for(int i=;i<=M;i++){
int ql=q[i].l,qr=q[i].r,id=q[i].id;
while(l<ql)Del(A[l++]);
while(l>ql)Add(A[--l]);
while(r<qr)Add(A[++r]);
while(r>qr)Del(A[r--]);
if(cnt[]==){
Ans[id]=;
continue;
}
int t=-;
for(int j=;j<=num;j++){
if(j!=num&&cnt[j]!=block){
t=j;
break;
}
else if(cnt[j]!=N-(num-)*block) t=j;
}
if(t==-){
Ans[id]=N;
continue;
}
int f=(t-)*block+,toj=t*block;
for(int j=f;j<=toj;j++)
if(vis[j]==){
Ans[id]=j;
break;
}
}
for(int i=;i<=M;i++)printf("%d\n",Ans[i]);
return ;
}

By:AlenaNuna

分块+莫队||BZOJ3339||BZOJ3585||Luogu4137||Rmq Problem / mex的更多相关文章

  1. BZOJ 3339 && luogu4137 Rmq Problem / mex(莫队)

    P4137 Rmq Problem / mex 题目描述 有一个长度为n的数组{a1,a2,-,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. 输入输出格式 输入格式: 第一行n,m. ...

  2. Luogu4137 Rmq problem/mex 主席树

    传送门 用主席树水莫队题…… 我们对于前缀和建立主席树,对于主席树中的每一个叶子节点表示它对应的数字最后出现的位置的编号,非叶子节点求左右节点的最小值,那么对于每一次询问$l,r$就是在第$r$棵主席 ...

  3. 【Luogu4137】Rmq Problem/mex (莫队)

    [Luogu4137]Rmq Problem/mex (莫队) 题面 洛谷 题解 裸的莫队 暴力跳\(ans\)就能\(AC\) 考虑复杂度有保证的做法 每次计算的时候把数字按照大小也分块 每次就枚举 ...

  4. 主席树||可持久化线段树+离散化 || 莫队+分块 ||BZOJ 3585: mex || Luogu P4137 Rmq Problem / mex

    题面:Rmq Problem / mex 题解: 先离散化,然后插一堆空白,大体就是如果(对于以a.data<b.data排序后的A)A[i-1].data+1!=A[i].data,则插一个空 ...

  5. P4137 Rmq Problem / mex (莫队)

    题目 P4137 Rmq Problem / mex 解析 莫队算法维护mex, 往里添加数的时候,若添加的数等于\(mex\),\(mex\)就不能等于这个值了,就从这个数开始枚举找\(mex\): ...

  6. bzoj 3585 mex - 线段树 - 分块 - 莫队算法

    Description 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. Input 第一行n,m. 第二行为n个数. 从第三行开始,每行一个询问 ...

  7. 【BZOJ-3809】Gty的二逼妹子序列 分块 + 莫队算法

    3809: Gty的二逼妹子序列 Time Limit: 80 Sec  Memory Limit: 28 MBSubmit: 1072  Solved: 292[Submit][Status][Di ...

  8. 2018.11.07 NOIP训练 L的鞋子(权值分块+莫队)

    传送门 乱搞题. 我直接对权值分块+莫队水过了. 不过调了30min30min30min发现ststst表挂了是真的不想说什么233. 代码

  9. HDU 5145 分块 莫队

    给定n个数,q个询问[l,r]区间,每次询问该区间的全排列多少种. 数值都是30000规模 首先考虑计算全排列,由于有同种元素存在,相当于每次在len=r-l+1长度的空格随意放入某种元素即$\bin ...

随机推荐

  1. orocos_kdl学习(一):坐标系变换

    KDL中提供了点(point).坐标系(frame).刚体速度(twist),以及6维力/力矩(wrench)等基本几何元素,具体可以参考 Geometric primitives 文档. Creat ...

  2. PL/SQL出现存储过程注释中文乱码

    进入PL/SQL命令行窗口输入:select userenv('language') from dual 查出数据库字符集 输入:select * from V$NLS_PARAMETERS 查出NL ...

  3. python排序出现的问题以及解决方案

    对某个文件夹中的文件重命名的时候,发现有些文件丢失,代码如下: #coding=gbk # Findthe every dir, if 01.rm exist in it, then rename i ...

  4. mysql乱码问题解决办法

    最近开发一下小项目,遇到了最常见的乱码问题. 1.数据库使用utf-8  utf-8_generic_ci编码,使用csv上传并导入数据,插入数据的时候出现了问题,有很大部分数据没有被导入,所以使用m ...

  5. Communications link failure due to underlying exception异常处理(转)

    最近的一个项目在Hibernate使用C3P0的连接池,数据库为Mysql.开发测试没有问题,在运行中每个一段长的空闲时间就出现异常: java 代码 org.hibernate.exception. ...

  6. elasticsearch中 refresh 和flush区别【转】

    elasticsearch中有两个比较重要的操作:refresh 和 flush refresh操作 当我们向ES发送请求的时候,我们发现es貌似可以在我们发请求的同时进行搜索.而这个实时建索引并可以 ...

  7. golang:mime.Decode、mime.DecodeHeader

    最近在做邮件解析的相关工作,在使用mime.Decode/mime.DecodeHeader时有些疑问. 有些搞不懂mime.Encode和mime.EncodeHeader的区别.

  8. 大津法---OTSU算法

    简介: 大津法(OTSU)是一种确定图像二值化分割阈值的算法,由日本学者大津于1979年提出.从大津法的原理上来讲,该方法又称作最大类间方差法,因为按照大津法求得的阈值进行图像二值化分割后,前景与背景 ...

  9. 【iCore4 双核心板_FPGA】例程十五:基于单口RAM的ARM+FPGA数据存取实验

    实验现象: 写RAM命令格式:write:地址(0-255),数据(0-65535)\cr\lf 读RAM命令格式:read:地址(0-255)\cr\lf 核心代码: int main(void) ...

  10. 系统垃圾清理利器CCleaner v5.30.6063绿色单文件版(增强版)

    系统垃圾清理利器CCleaner现已更新至v5.30.6063,此次更新为Edge.IE浏览器提供了更好的清理功能,更新了Windows Explorer MRU清理功能,同时改善了应用程序中的SSD ...