分块+莫队||BZOJ3339||BZOJ3585||Luogu4137||Rmq Problem / mex
题解:先莫队排序一波,然后对权值进行分块,找出第一个没有填满的块,直接for一遍找答案。
除了bzoj3339以外,另外两道题Ai范围都是1e9。显然最劣情况下答案是N,所以大于N的Ai都直接无视就可以。
由于求的是最小的自然数,自然数包括0,所以要额外处理一下含有0的块。我这里是直接把0拖出来放在第0块了。
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
inline int rd(){
int f=,x=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return f*x;
}
const int maxn=,maxm=,max_block=;
int N,M,A[maxn],l,r,block,Ans[maxm],vis[maxn],cnt[max_block],num,belong[maxn];
struct Q{
int id,l,r;
}q[maxm];
inline bool cmp(const Q&a,const Q&b){
if(belong[a.l]==belong[b.l])return a.r<b.r;
return a.l<b.l;
}
inline void Add(int x){
if(x<=N){
if(vis[x]==)cnt[belong[x]]++;
vis[x]++;
}
return;
}
inline void Del(int x){
if(x<=N){
vis[x]--;
if(vis[x]==)cnt[belong[x]]--;
}
return;
}
int main(){
N=rd();M=rd();
block=sqrt(N);
num=N/block;
if(N%block)num++;
for(int i=;i<=N;i++){
A[i]=rd();
belong[i]=(i-)/block+;
}
belong[]=;
for(int i=;i<=M;i++){
q[i].id=i;
q[i].l=rd();
q[i].r=rd();
}
sort(q+,q+M+,cmp);
l=;r=;
for(int i=;i<=M;i++){
int ql=q[i].l,qr=q[i].r,id=q[i].id;
while(l<ql)Del(A[l++]);
while(l>ql)Add(A[--l]);
while(r<qr)Add(A[++r]);
while(r>qr)Del(A[r--]);
if(cnt[]==){
Ans[id]=;
continue;
}
int t=-;
for(int j=;j<=num;j++){
if(j!=num&&cnt[j]!=block){
t=j;
break;
}
else if(cnt[j]!=N-(num-)*block) t=j;
}
if(t==-){
Ans[id]=N;
continue;
}
int f=(t-)*block+,toj=t*block;
for(int j=f;j<=toj;j++)
if(vis[j]==){
Ans[id]=j;
break;
}
}
for(int i=;i<=M;i++)printf("%d\n",Ans[i]);
return ;
}
By:AlenaNuna
分块+莫队||BZOJ3339||BZOJ3585||Luogu4137||Rmq Problem / mex的更多相关文章
- BZOJ 3339 && luogu4137 Rmq Problem / mex(莫队)
P4137 Rmq Problem / mex 题目描述 有一个长度为n的数组{a1,a2,-,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. 输入输出格式 输入格式: 第一行n,m. ...
- Luogu4137 Rmq problem/mex 主席树
传送门 用主席树水莫队题…… 我们对于前缀和建立主席树,对于主席树中的每一个叶子节点表示它对应的数字最后出现的位置的编号,非叶子节点求左右节点的最小值,那么对于每一次询问$l,r$就是在第$r$棵主席 ...
- 【Luogu4137】Rmq Problem/mex (莫队)
[Luogu4137]Rmq Problem/mex (莫队) 题面 洛谷 题解 裸的莫队 暴力跳\(ans\)就能\(AC\) 考虑复杂度有保证的做法 每次计算的时候把数字按照大小也分块 每次就枚举 ...
- 主席树||可持久化线段树+离散化 || 莫队+分块 ||BZOJ 3585: mex || Luogu P4137 Rmq Problem / mex
题面:Rmq Problem / mex 题解: 先离散化,然后插一堆空白,大体就是如果(对于以a.data<b.data排序后的A)A[i-1].data+1!=A[i].data,则插一个空 ...
- P4137 Rmq Problem / mex (莫队)
题目 P4137 Rmq Problem / mex 解析 莫队算法维护mex, 往里添加数的时候,若添加的数等于\(mex\),\(mex\)就不能等于这个值了,就从这个数开始枚举找\(mex\): ...
- bzoj 3585 mex - 线段树 - 分块 - 莫队算法
Description 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. Input 第一行n,m. 第二行为n个数. 从第三行开始,每行一个询问 ...
- 【BZOJ-3809】Gty的二逼妹子序列 分块 + 莫队算法
3809: Gty的二逼妹子序列 Time Limit: 80 Sec Memory Limit: 28 MBSubmit: 1072 Solved: 292[Submit][Status][Di ...
- 2018.11.07 NOIP训练 L的鞋子(权值分块+莫队)
传送门 乱搞题. 我直接对权值分块+莫队水过了. 不过调了30min30min30min发现ststst表挂了是真的不想说什么233. 代码
- HDU 5145 分块 莫队
给定n个数,q个询问[l,r]区间,每次询问该区间的全排列多少种. 数值都是30000规模 首先考虑计算全排列,由于有同种元素存在,相当于每次在len=r-l+1长度的空格随意放入某种元素即$\bin ...
随机推荐
- WinDbg下载符号文件
设置添加系统环境变量_NT_SYMBOL_PATH 的值为:srv*c:\symbols*http://msdl.microsoft.com/download/symbols 这样启动WinDbg的时 ...
- 使用Genymotion模拟器调试出现INSTALL_FAILED_CPU_ABI_INCOMPATIBLE错误的解决办法
如果遇到下面这种错误: 点击下载Genymotion-ARM-Translation.zip 百度云连接:http://pan.baidu.com/s/1o6ifjMM 将你的虚拟器启动起来,将下载好 ...
- redhat7.0配置网卡
1.切换到网卡配置目录: cd /etc/sysconfig/network-scripts 2.编辑网卡信息 如 vim ifcfg-enpos3 TYPE=Ethernet #设备类型 BOOTP ...
- R语言手册
在R的官方教程里是这么给R下注解的:一个数据分析和图形显示的程序设计环境(A system for data analysis and visualization which is built bas ...
- HDU 3277 Marriage Match III(并查集+二分答案+最大流SAP)拆点,经典
Marriage Match III Time Limit: 10000/4000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- 【R作图】蜜蜂群图beeswarm和jitter的使用
最近经常要画好看的盒形图,还要在上面加入散点,所以总结了两个方法. 第一种方法是,利用beeswarm函数: library(beeswarm) beeswarm 蜜蜂群图 http://rgm3.l ...
- Vert.x 示例
//filename: MainVerticle.java package io.vertx.guides.wiki; import io.vertx.core.AbstractVerticle; i ...
- MySQL四种事务隔离级别详解
本文实验的测试环境:Windows 10+cmd+MySQL5.6.36+InnoDB 一.事务的基本要素(ACID) 1.原子性(Atomicity):事务开始后所有操作,要么全部做完,要么全部不做 ...
- ElasticSearch 内存那点事【转】
“该给ES分配多少内存?” “JVM参数如何优化?““为何我的Heap占用这么高?”“为何经常有某个field的数据量超出内存限制的异常?““为何感觉上没多少数据,也会经常Out Of Memory? ...
- layui表单验证
layui表单元素的校验只需在元素上加入lay-verify,layui提供了以下值. required(必填项) phone(手机号) email(邮箱) url(网址) number(数字) da ...