题目链接

\(Description\)

将n个村庄连成一棵树,村之间的距离为两村的欧几里得距离,村之间的花费为海拔z的差,求花费和与长度和的最小比值

\(Solution\)

二分,假设mid为可行的某一生成树的解,则应有 \((∑cost)/(∑dis) = mid\)

变形得 \(\sum(cost-mid*dis) = 0\)

取cost-mid*dis为边权,Prim求最小生成树(即尽可能满足mid)

若\(\sum(cost-mid*dis) > 0\),说明怎么也满足不了mid,mid不是可行解 偏小;若 < 0,则存在某些生成树满足条件,还可以更优

若 = 0,那么就是最小值了

1.二分

//19100K 1235MS
#include <cmath>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
const int N=1005;
const double eps=1e-4,INF=1e8; int n,x[N],y[N],z[N],cost[N][N];
double dis[N][N],e[N][N],d[N];
bool vis[N]; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline double Calc(int i,int j) {return sqrt(1.0*(x[i]-x[j])*(x[i]-x[j])+1.0*(y[i]-y[j])*(y[i]-y[j]));}
bool Check(double x)
{
for(int i=1; i<=n; ++i)
for(int j=i+1; j<=n; ++j)
e[j][i]=e[i][j]=1.0*cost[i][j]-x*dis[i][j];
double res=0;//Prim
memset(vis,0,sizeof vis);
for(int i=2; i<=n; ++i) d[i]=e[1][i];
d[0]=INF, vis[1]=1;
for(int now,i=1; i<n; ++i)
{
now=0;
for(int j=2; j<=n; ++j)
if(!vis[j] && d[j]<d[now]) now=j;
vis[now]=1, res+=d[now];
for(int j=2; j<=n; ++j)
if(!vis[j] && d[j]>e[now][j])
d[j]=e[now][j];
}
return res<=0;
} int main()
{
while(n=read(),n)
{
for(int i=1; i<=n; ++i) x[i]=read(),y[i]=read(),z[i]=read();
for(int i=1; i<n; ++i)
for(int j=i+1; j<=n; ++j)
dis[i][j]=Calc(i,j),cost[i][j]=std::abs(z[i]-z[j]);
double l=0.0,r=101.0,mid;//r=多少啊。。
while(r-l>=eps)
{
if(Check(mid=(l+r)/2.0)) r=mid;
else l=mid;
}
printf("%.3f\n",l);//POJ不能用%lf! 惊了 刚知道
}
return 0;
}

2.Dinkelbach迭代

/*
20076K 297MS
并不明白原理 先将就用
*/
#include <cmath>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
const int N=1005;
const double eps=1e-4,INF=1e8; int n,x[N],y[N],z[N],cost[N][N],pre[N];
double dis[N][N],e[N][N],d[N];
bool vis[N]; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline double Calc(int i,int j) {return sqrt(1.0*(x[i]-x[j])*(x[i]-x[j])+1.0*(y[i]-y[j])*(y[i]-y[j]));}
double Check(double x)
{
for(int i=1; i<=n; ++i)
for(int j=i+1; j<=n; ++j)
e[j][i]=e[i][j]=1.0*cost[i][j]-x*dis[i][j];
double Dis=0,Cost=0;//Prim
memset(vis,0,sizeof vis);
for(int i=2; i<=n; ++i) d[i]=e[1][i],pre[i]=1;
d[0]=INF, vis[1]=1;
for(int now,i=1; i<n; ++i)
{
now=0;
for(int j=2; j<=n; ++j)
if(!vis[j] && d[j]<d[now]) now=j;
vis[now]=1, Dis+=dis[pre[now]][now], Cost+=cost[pre[now]][now];
for(int j=2; j<=n; ++j)
if(!vis[j] && d[j]>e[now][j])
d[j]=e[now][j], pre[j]=now;
}
return Cost/Dis;
} int main()
{
while(n=read(),n)
{
for(int i=1; i<=n; ++i) x[i]=read(),y[i]=read(),z[i]=read();
for(int i=1; i<n; ++i)
for(int j=i+1; j<=n; ++j)
dis[j][i]=dis[i][j]=Calc(i,j), cost[j][i]=cost[i][j]=std::abs(z[i]-z[j]);
double x=0,y;
while(1)
{
y=Check(x);
if(fabs(x-y)<eps) break;
x=y;
}
printf("%.3f\n",x);
}
return 0;
}

POJ.2728.Desert King(最优比率生成树 Prim 01分数规划 二分/Dinkelbach迭代)的更多相关文章

  1. POJ 2728 Desert King(最优比率生成树, 01分数规划)

    题意: 给定n个村子的坐标(x,y)和高度z, 求出修n-1条路连通所有村子, 并且让 修路花费/修路长度 最少的值 两个村子修一条路, 修路花费 = abs(高度差), 修路长度 = 欧氏距离 分析 ...

  2. POJ 2728 Desert King 最优比率生成树

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20978   Accepted: 5898 [Des ...

  3. POJ 2728 Desert King (最优比率树)

    题意:有n个村庄,村庄在不同坐标和海拔,现在要对所有村庄供水,只要两个村庄之间有一条路即可,建造水管距离为坐标之间的欧几里德距离,费用为海拔之差,现在要求方案使得费用与距离的比值最小,很显然,这个题目 ...

  4. POJ 2728 Desert King (最优比例生成树)

    POJ2728 无向图中对每条边i 有两个权值wi 和vi 求一个生成树使得 (w1+w2+...wn-1)/(v1+v2+...+vn-1)最小. 采用二分答案mid的思想. 将边的权值改为 wi- ...

  5. Desert King(最优比率生成树)

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 22717   Accepted: 6374 Desc ...

  6. POJ2728 Desert King —— 最优比率生成树 二分法

    题目链接:http://poj.org/problem?id=2728 Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Subm ...

  7. 【POJ2728】Desert King 最优比率生成树

    题目大意:给定一个 N 个点的无向完全图,边有两个不同性质的边权,求该无向图的一棵最优比例生成树,使得性质为 A 的边权和比性质为 B 的边权和最小. 题解:要求的答案可以看成是 0-1 分数规划问题 ...

  8. POJ2728 Desert King 最优比率生成树

    题目 http://poj.org/problem?id=2728 关键词:0/1分数规划,参数搜索,二分法,dinkelbach 参考资料:http://hi.baidu.com/zzningxp/ ...

  9. poj 2728 最优比例生成树(01分数规划)模板

    /* 迭代法 :204Ms */ #include<stdio.h> #include<string.h> #include<math.h> #define N 1 ...

随机推荐

  1. 搭建Modelsim SE仿真环境-使用do文件仿真

    本章我们介绍仿真环境搭建是基于Modelsim SE的.Modelsim有很多版本,比如说Modelsim-Altera,但是笔者还是建议大家使用Modelsim-SE,Modelsim-Altera ...

  2. Linux内核调试 - 一般人儿我都不告诉他(一)【转】

    转自:http://www.cnblogs.com/armlinux/archive/2011/04/14/2396821.html 悄悄地进入Linux内核调试(一) 本文基址:http://blo ...

  3. WiFi基本知识【转】

    转自:http://blog.csdn.net/myarrow/article/details/7930131 1. IE802.11简介 标准号 IEEE 802.11b IEEE 802.11a ...

  4. oem 重建

    OracleDBControl启动失败to local from URL=http://your-url.co     方法: emca -deconfig dbcontrol db -repos d ...

  5. linux下使用screen和ping命令对网络质量进行监控

    linux下使用screen和ping命令对网络质量进行监控 场景:应用连接云服务器经常偶尔会出现连接不上的情况,android和IOS端连接的时候也会出现tcp延时5秒以上,现在想验证是否是云服务商 ...

  6. navicat连接sqlserver数据库提示:未发现数据源名称并且未指定默认驱动程序

    原因是navicat没有安装sqlserver驱动,就在navicat安装目录下,找到双击安装即可: 

  7. pytest十二:cmd命令行参数

    命令行参数是根据命令行选项将不同的值传递给测试函数,比如平常在 cmd 执行”pytest —html=report.html”,这里面的”—html=report.html“就是从命令行传入的参数对 ...

  8. java判断给定路径或URL下的文件或文件夹是否存在?

    if (file.exists()) { 来判断这是不是一个文件. file.isDirectory() 来判断这是不是一个文件夹. 1.File testFile = new File(testFi ...

  9. 【BZOJ4927】第一题 双指针+DP

    题解: 虽然是过了,不过做的十分智障 首先是有 2根 2 1 1 , 3根 1 1 1 这两种方法 然后考虑2 2 1 1 two-point-two没啥好说的 3 1 1 1 我很智障的以为数据范围 ...

  10. VS2010发布、打包安装程序(超全超详细)

    1. 在vs2010 选择“新建项目”→“ 其他项目类型”→“ Visual Studio Installer→“安装项目”: 命名为:Setup1 . 这是在VS2010中将有三个文件夹, 1.“应 ...