题意:给n个任务 每个任务有两个值\(a,b\) 现有许多机器 每台最多可以执行两次任务 若存在第二次任务则满足\(a_{second}<a_{first}\) 定义代价\(val = \frac { \sum_{i \in S } a[i]} { \sum_{i \in S} b[i] }\) 其中\(S\)为当做第一次来执行的任务的集合 求\(val\)的最小值

\(n \leq 60,a_i \leq 10^8,b_i \leq 100\)

很容易想到二分最小值并且联想到经典的\(01\)分数规划 即

\(\frac {\sum_{i=1}^{n}a[i]}{\sum_{i=1}^{n}b[i]} \leq x\)

\({\sum_{i=1}^{n}a[i]} \leq x \times {\sum_{i=1}^{n}b[i]}\)

\({\sum_{i=1}^{n}a[i]}-x \times {\sum_{i=1}^{n}b[i]} \leq 0\)

\({\sum_{i=1}^{n} (a[i]-x \times b[i]) \leq 0}\)

顺着这个思路 我们来设计\(dp\)方程

先将任务按\(a\)降序排序

\(f[i][j][k]\)表示做到第\(i\)个有\(j\)个大于\(a_i\)的任务是当做第一次来做且没有被安排第二次有\(k\)个等于\(a_i\)的任务是当做第一次来做且没有被安排第二次

转移式为

\(f[i][j][k]=min(f[i+1][j-1][k],f[i+1][j+1][k]+a_i-x \times b_i )(a_i=a_{i+1})\)

\(f[i][j][k]=min(f[i+1][j+k-1][0],f[i+1][j+k-1][0]+a_i-x \times b_i) (a_i>a_{i+1})\)

\(dp\)之后只需要判定\(f[0][0][0] \leq 0\)是否满足来二分就好了

有个坑点是题目要求输出\(ceil(ans \times 1000)\) 我用\(google\)翻译出来却是把\(ans \times 1000\)四舍五入 以后还是读英文题面好了

#include<bits/stdc++.h>
using namespace std;
#define mod 1000000007
#define ll long long
#define cl(x) memset(x,0,sizeof x)
#ifdef Poi
#define bug(x) cout<<(#x)<<" "<<(x)<<endl
#define debug(...) fprintf(stderr, __VA_ARGS__)
#else
#define bug(x)
#define debug(...)
#endif
const int INF = 0x7fffffff;
const int N=55;
inline int read(){
int x=0,rev=0,ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')rev=1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return rev?-x:x;
}
struct data{
double a,b;
}t[N];
double X,f[N][N][N];
bool vis[N][N][N];
int n;
ll ans; bool cmp(data i,data j){
return i.a>j.a;
}
double dfs(int pos,int d,int g){
if(pos==n) return 0;
if(vis[pos][d][g]) return f[pos][d][g];
vis[pos][d][g]=1;
double mn=INF;
if(pos<n-1&&t[pos].a==t[pos+1].a) {
if(d) mn=min(mn,dfs(pos+1,d-1,g));
mn=min(mn,dfs(pos+1,d,g+1)+t[pos].a-X*t[pos].b);
}
else if(t[pos].a!=t[pos+1].a||pos==n-1){
if(d) mn=min(mn,dfs(pos+1,d+g-1,0));
mn=min(mn,dfs(pos+1,d+g+1,0)+t[pos].a-X*t[pos].b);
}
return f[pos][d][g]=mn;
}
bool judge(double k){
X=k,cl(vis),cl(f);
return dfs(0,0,0)<=0;
} int main(){
#ifdef Poi
freopen("in.txt","r",stdin);
#endif
n=read();
for(int i=0;i<n;i++) t[i].a=read();
// bug(t[n-1].a);
for(int i=0;i<n;i++) t[i].b=read();
if(t[0].a==99999991) {
// for(int i=0;i<n;i++) cout<<t[i].b<<endl;
}
sort(t,t+n,cmp);
double l=0,r=1e8;
for(int T=1;T<=100;T++){
double mid=(l+r)/2.0;
// bug(mid);
if(judge(mid)) r=mid;
else l=mid;
}
// bug(l);
ans=(ceil)(l*1000);
// printf("%.6lf\n",l);
cout<<ans<<endl;
}

Codeforces 994F Compute Power 二分+DP的更多相关文章

  1. Codeforces 660C - Hard Process - [二分+DP]

    题目链接:http://codeforces.com/problemset/problem/660/C 题意: 给你一个长度为 $n$ 的 $01$ 串 $a$,记 $f(a)$ 表示其中最长的一段连 ...

  2. codeforces 808 E. Selling Souvenirs (dp+二分+思维)

    题目链接:http://codeforces.com/contest/808/problem/E 题意:最多有100000个物品最大能放下300000的背包,每个物品都有权值和重量,为能够带的最大权值 ...

  3. 「学习笔记」wqs二分/dp凸优化

    [学习笔记]wqs二分/DP凸优化 从一个经典问题谈起: 有一个长度为 \(n\) 的序列 \(a\),要求找出恰好 \(k\) 个不相交的连续子序列,使得这 \(k\) 个序列的和最大 \(1 \l ...

  4. 二分+DP HDU 3433 A Task Process

    HDU 3433 A Task Process Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

  5. hdu 3433 A Task Process 二分+dp

    A Task Process Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  6. 2018.10.24 NOIP模拟 小 C 的数组(二分+dp)

    传送门 考试自己yyyyyy的乱搞的没过大样例二分+dp二分+dp二分+dp过了606060把我自己都吓到了! 这么说来乱搞跟被卡常的正解比只少101010分? 那我考场不打其他暴力想正解血亏啊. 正 ...

  7. 【bzoj1044】[HAOI2008]木棍分割 二分+dp

    题目描述 有n根木棍, 第i根木棍的长度为Li,n根木棍依次连结了一起, 总共有n-1个连接处. 现在允许你最多砍断m个连接处, 砍完后n根木棍被分成了很多段,要求满足总长度最大的一段长度最小, 并且 ...

  8. Luogu P2511 [HAOI2008]木棍分割 二分+DP

    思路:二分+DP 提交:3次 错因:二分写萎了,$cnt$记录段数但没有初始化成$1$,$m$切的次数没有$+1$ 思路: 先二分答案,不提: 然后有个很$naive$的$DP$: 设$f[i][j] ...

  9. [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆)

    [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆) 题面 一棵二叉树的所有点的点权都是给定的集合中的一个数. 让你求出1到m中所有权 ...

随机推荐

  1. 【转】htop使用详解--史上最强(没有之一)

    在管理进程时通常要借助一些工具,比较常用的就是ps和top了:不过CentOS还为我们提供了一个更加强大的工具htop,下面就来了解一下此工具的使用方法.一.安装htop htop工具在epel源中提 ...

  2. dubbo系列三、架构介绍及各模块关系

    一.整体设计 图例说明: 图中左边淡蓝背景的为服务消费方使用的接口,右边淡绿色背景的为服务提供方使用的接口,位于中轴线上的为双方都用到的接口. 图中从下至上分为十层,各层均为单向依赖,右边的黑色箭头代 ...

  3. Linux版本Membase无法写入default bucket的问题分析

    最近项目中使用的membase发现出了点问题,生产环境中读写各种数据都正常,可是新搭建的开发环境下,只有default bucket写不进去数据,调用store总是返回FALSE,配置文件也是一模一样 ...

  4. 【转】C++ map的基本操作和使用

    1.map简介 map是一类关联式容器.它的特点是增加和删除节点对迭代器的影响较小,除了那个操作节点,对其它的节点都没有什么影响.对于迭代器来说,可以修改实值,而不能修改key. 2.map的功能 自 ...

  5. GetStockObject 理解

    原文地址:https://www.cnblogs.com/Clingingboy/archive/2013/04/13/3017952.html GetStockObject在图形编程中是常用API之 ...

  6. 最大流算法-最高标号预流推进(HLPP)

    昨天我们学习了ISAP算法,它属于增广路算法的大类.今天学习的算法是预流推进算法中很高效的一类--最高标号预流推进(HLPP). 预流推进 预流推进是一种很直观的网络流算法.如果给到一个网络流让你手算 ...

  7. windows下搭建eclipse关于python的开发环境及初始化参数配置

    1.安装jdk 因为eclipse是java开发的,运行eclipse程序需要安装jdk 安装jdk以后需要配置java_home环境变量 2.安装python2.7(比较简单,此处略) 3.下载ec ...

  8. cas中总是得不到返回的属性

    cas可以登录,但是得不到返回的属性,后来看日志才知道数据库链接报错,原来URL中少了jdbc:.真是愚蠢的错误,记录之,警之!

  9. Day6------------磁盘用满的两种情况

    1.文件包含元数据和写入的内容 元数据:存在硬盘中的inode ls -i /etc/passwd.bak 查看inode df -i 查看inode 2.磁盘用满的两种情况 1).内容太多 2).空 ...

  10. OneNET麒麟座应用开发之二:串口读取PM25传感器数据

    作为环境数据监测站首先要获取大气中可吸入颗粒物的数据.为了检测PM25数据,我们采用北京海联信为的HLPM025K3型号传感器,该传感器使用激光法测量PM25和PM10的数据. 该型传感器的检测对象如 ...