[国家集训队]Crash的数字表格
Description:
求$ \sum_{i=1}^n \sum_{j=1}^m lcm(i,j) $
Hint:
$ n,m<=10^7 $
Solution:
这题有每次询问 \(O(n)\) 做法,然而原题是多组询问,所以还是好好推 \(O(\sqrt[]{n})\) 做法
首先:
\(Ans=\sum_{d=1}^{n}d * \sum_{i=1}^n \sum_{j=1}^m i * j * [gcd(i,j)==1] \)
$Ans=\sum_{d=1}^{n}d * \sum_{k=1}^{\lfloor \frac{n}{d} \rfloor} \mu(k) * k^2 \sum_{i=1}^{\lfloor \frac{n}{kd} \rfloor} \sum_{j=1}^{\lfloor \frac{m}{kd} \rfloor } i * j $
换元得:
\(Ans=\sum_{T=1}^{n} \sum_{i=1}^{\lfloor \frac{n}{T} \rfloor} \sum_{j=1}^{\lfloor \frac{m}{T} \rfloor } i * j * \sum_{k|T} \mu(k) * k^2 * d \)
$Ans=\sum_{T=1}^{n} \sum_{i=1}^{\lfloor \frac{n}{T} \rfloor} \sum_{j=1}^{\lfloor \frac{m}{T} \rfloor } i * j * (T * \sum_{k|T} \mu(k) * k) $
易知 \(g(T)=\sum_{k|T} \mu(k) * k\) 为积性函数
前面的$ \sum_{i=1}^{\lfloor \frac{n}{T} \rfloor} \sum_{j=1}^{\lfloor \frac{m}{T} \rfloor }i * j$ 就是两个等差数列相乘
后面的线性筛处理出\(T*g(T)\)的前缀和即可
#include<bits/stdc++.h>
using namespace std;
const int mxn=1e7+5,mod=20101009;
int n,m,tot;
int p[mxn],vis[mxn];
long long g[mxn],f[mxn];
void sieve(int lim)
{
g[1]=1;
for(int i=2;i<=lim;++i) {
if(!vis[i]) g[i]=1-i,p[++tot]=i;
for(int j=1;j<=tot&&p[j]*i<=lim;++j) {
vis[p[j]*i]=1;
if(i%p[j]) g[p[j]*i]=g[i]*g[p[j]]%mod;
else {g[p[j]*i]=g[i];break; }
}
}
for(int i=1;i<=lim;++i)
f[i]=(f[i-1]+g[i]*i%mod)%mod;
}
int main()
{
scanf("%d%d",&n,&m); int ans=0;
sieve(10000000); if(n>m) swap(n,m);
for(int l=1,r;l<=n;l=r+1) {
r=min(n/(n/l),m/(m/l)); int x=n/l,y=m/l;
ans=(ans+1ll*(1ll*x*(x+1)/2%mod)*(1ll*y*(y+1)/2%mod)%mod*((f[r]-f[l-1]+mod)%mod)%mod)%mod;
}
printf("%d\n",(ans+mod)%mod);
return 0;
}
[国家集训队]Crash的数字表格的更多相关文章
- 洛谷 P1829 [国家集训队]Crash的数字表格 / JZPTAB 解题报告
[国家集训队]Crash的数字表格 / JZPTAB 题意 求\(\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)\),\(n,m\le 10^7\) 鉴于 ...
- [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)
题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...
- 题解-[国家集训队]Crash的数字表格 / JZPTAB
题解-[国家集训队]Crash的数字表格 / JZPTAB 前置知识: 莫比乌斯反演 </> [国家集训队]Crash的数字表格 / JZPTAB 单组测试数据,给定 \(n,m\) ,求 ...
- P1829 [国家集训队]Crash的数字表格
P1829 [国家集训队]Crash的数字表格 原题传送门 前置芝士 莫比乌斯反演 乘法逆元 数论分块 正文 //补充:以下式子中的除法均为整除 由题目可以得知,这道题让我们所求的数,用一个式子来表达 ...
- 洛谷P1829 [国家集训队]Crash的数字表格
题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时整除a和b的最小正整数.例如,LCM(6, ...
- [luogu1829][bzoj2154][国家集训队]Crash的数字表格 / JZPTAB【莫比乌斯反演】
传送门:洛谷,bzoj 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时整除a和b的最小正整 ...
- 洛谷P1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
题目背景 提示:原 P1829 半数集问题 已经迁移至 P1028 数的计算 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a ...
- 【题解】[国家集训队]Crash的数字表格 / JZPTAB
求解\(\sum_{i = 1}^{n}\sum_{j = 1}^{m}lcm\left ( i,j \right )\). 有\(lcm\left ( i,j \right )=\frac{ij}{ ...
- P1829 [国家集训队]Crash的数字表格 / JZPTAB
推式子太快乐啦!虽然我好蠢而且dummy和maomao好巨(划掉) 思路 莫比乌斯反演的题目 首先这题有\(O(\sqrt n)\)的做法但是我没写咕咕咕 然后就是爆推一波式子 \[ \sum_{i= ...
随机推荐
- 每天一个linux命令【转】
转自:http://www.cnblogs.com/peida/archive/2012/12/05/2803591.html 开始详细系统的学习linux常用命令,坚持每天一个命令,所以这个系列为每 ...
- sqlserver循环
普通while循环 1 循环5来修改学生信息 循环遍历修改记录 DECLARE @i int set @i=0 while @i<5 BEGIN update Student set demo ...
- 解决服务器代码执行mvn test后在classes和test-classes下找不到Spring的bean.xml配置文件问题
昨天在jenkins构建代码后,执行mvn test 就报错如下: 提示的bean.xm不存在呀, 再来看源码ApplicationContext 的声明 ApplicationContext ctx ...
- Oracle12c 性能优化攻略:攻略1-1:创建具有最优性能的数据库
一:章节前言 本章着眼于影响表中数据存储性能的数据库特性. 表的性能部分取决于在创建之前所应用的数据库特性.例如:在最初创建数据库时采用的物理存储特性以及相关的表空间都会在后来影响表的性能.类似地,表 ...
- inoremap nnoremap vnoremap
原贴:https://www.xuebuyuan.com/zh-hant/1116162.html inoremap nnoremap vnoremap i insert 在插入模式有效 n 在 普通 ...
- (七)CXF添加拦截器
今天开始讲下拦截器,前面大家学过servlet,struts2 都有拦截器概念,主要作用是做一些权限过滤,编码处理等: webservice也可以加上拦截器,我们可以给webservice请求加权限判 ...
- 步步为营-23-通过GridView实现增删改
说明:把xml中的数据放入到数据源list中然后显示到gridview中,参考上一节内容 1 UI页面 2创建student类 public class Student { public int ID ...
- 使用super调用父类的构造方法
package com.bjpowernode.t02inheritance.c09; /* * 使用super调用父类的构造方法 */public class TestSuper02 { publi ...
- day17--JQuery选择器
操作HTML标签的时候,我们首先要找到HTML标签的位置,然后进行操作,下面来看看集中查找标签的方法,如下: 1.Id选择器 -- Id在HTML中是唯一的,通过Id进行查找,Id ...
- jquery attr方法和prop方法获取input的checked属性问题
jquery attr方法和prop方法获取input的checked属性问题 问题:经常使用jQuery插件的attr方法获取checked属性值,获取的值的大小为未定义,此时可以用prop方法 ...