storm 001
Hadoop、Storm系统和组件接口对比表: package storm;
import org.apache.storm.Config;
import org.apache.storm.StormSubmitter;
import org.apache.storm.generated.StormTopology;
import org.apache.storm.topology.TopologyBuilder;
/**
* 组织各个处理组件形成一个完整的处理流程,就是所谓的topology(类似于mapreduce程序中的job)
* 并且将该topology提交给storm集群去运行,topology提交到集群后就将永无休止地运行,除非人为或者异常退出
*/
public class TopoMain {//storm.TopoMain
public static void main(String[] args) throws Exception {
TopologyBuilder builder = new TopologyBuilder();
// 将我们的spout组件设置到topology中去
// parallelism_hint :4 表示用4个excutor来执行这个组件
// setNumTasks(8) 设置的是该组件执行时的并发task数量,也就意味着1个excutor会运行2个task
builder.setSpout("randomspout", new RandomWordSpout(), 4).setNumTasks(8);
// 将大写转换bolt组件设置到topology,并且指定它接收randomspout组件的消息
// .shuffleGrouping("randomspout")包含两层含义:
// 1、upperbolt组件接收的tuple消息一定来自于randomspout组件
// 2、randomspout组件和upperbolt组件的大量并发task实例之间收发消息时采用的分组策略是随机分组shuffleGrouping
builder.setBolt("upperbolt", new UpperBolt(), 4).shuffleGrouping("randomspout");
// 将添加后缀的bolt组件设置到topology,并且指定它接收upperbolt组件的消息
builder.setBolt("suffixbolt", new SuffixBolt(), 4).shuffleGrouping("upperbolt");
// 用builder来创建一个topology
StormTopology demotop = builder.createTopology();
// 配置一些topology在集群中运行时的参数
Config conf = new Config();
// 这里设置的是整个demotop所占用的槽位数,也就是worker的数量
conf.setNumWorkers(4);
conf.setDebug(true);
conf.setNumAckers(0);
//System.setProperty("storm.jar", "/home/hadoop/storm.jar");
// 将这个topology提交给storm集群运行
StormSubmitter.submitTopology("demotopo2", conf, demotop);
//Must submit topologies using the 'storm' client script so that StormSubmitter knows which jar to upload.
}
}
-----------------------------------------------------------------------------------------------------------------
package storm; import java.util.Map; import java.util.Random; import org.apache.storm.spout.SpoutOutputCollector; import org.apache.storm.task.TopologyContext; import org.apache.storm.topology.OutputFieldsDeclarer; import org.apache.storm.topology.base.BaseRichSpout; import org.apache.storm.tuple.Fields; import org.apache.storm.tuple.Values; public class RandomWordSpout extends BaseRichSpout { private SpoutOutputCollector collector; // 模拟一些数据 String[] str = { "hello", "word", "you", "how", "are" }; // 初始化方法,在spout组件实例化时调用一次 @Override public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) { this.collector = collector; } // 声明本spout组件发送出去的tuple中的数据的字段名 @Override public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("orignname")); } @Override public void nextTuple() { // 随机挑选出一个名称 Random random = new Random(); int index = random.nextInt(str.length); // 获取名称 String name = str[index]; // 将名称进行封装成tuple,发送消息给下一个组件 collector.emit(new Values(name)); } }
************************************************
package storm; import java.io.FileWriter; import java.io.IOException; import java.util.Map; import java.util.UUID; import org.apache.storm.task.TopologyContext; import org.apache.storm.topology.BasicOutputCollector; import org.apache.storm.topology.OutputFieldsDeclarer; import org.apache.storm.topology.base.BaseBasicBolt; import org.apache.storm.tuple.Tuple; public class SuffixBolt extends BaseBasicBolt { FileWriter fileWriter = null; // 在bolt组件运行过程中只会被调用一次 @Override public void prepare(Map stormConf, TopologyContext context) { try { fileWriter = new FileWriter("/home/hadoop/stormoutput2/" + UUID.randomUUID()); } catch (IOException e) { throw new RuntimeException(e); } } // 该bolt组件的核心处理逻辑 // 每收到一个tuple消息,就会被调用一次 @Override public void execute(Tuple tuple, BasicOutputCollector collector) { // 先拿到上一个组件发送过来的名称 String upper_name = tuple.getString(0); String suffix_name = upper_name + "_itisok"; // 为上一个组件发送过来的商品名称添加后缀 try { fileWriter.write(suffix_name); fileWriter.write("\n"); fileWriter.flush(); } catch (IOException e) { throw new RuntimeException(e); } } @Override public void declareOutputFields(OutputFieldsDeclarer declarer) { // TODO Auto-generated method stub } }
***********************************************
package storm; import org.apache.storm.topology.BasicOutputCollector; import org.apache.storm.topology.OutputFieldsDeclarer; import org.apache.storm.topology.base.BaseBasicBolt; import org.apache.storm.tuple.Fields; import org.apache.storm.tuple.Tuple; import org.apache.storm.tuple.Values; public class UpperBolt extends BaseBasicBolt { // 业务处理逻辑 @Override public void execute(Tuple tuple, BasicOutputCollector collector) { // 先获取到上一个组件传递过来的数据,数据在tuple里面 String godName = tuple.getString(0); // 将名称转换成大写 String godName_upper = godName.toUpperCase(); // 将转换完成的商品名发送出去 collector.emit(new Values(godName_upper)); } // 声明该bolt组件要发出去的tuple的字段 @Override public void declareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(new Fields("uppername")); } }
[root@alamps bin]# mkdir /home/hadoop/stormoutput2
[root@alamps bin]# storm jar /home/hadoop/storm2.jar storm.TopoMain
Running: /home/hadoop/app/jdk1..0_144/bin/java -client -Ddaemon.name= -Dstorm.options= -Dstorm.home=/home/hadoop/app/storm -Dstorm.log.dir=/home/hadoop/app/storm/logs -Djava.library.path=/usr/local/lib:/opt/local/lib:/usr/lib -Dstorm.conf.file= -cp /home/hadoop/app/storm/lib/storm-rename-hack-1.1..jar:/home/hadoop/app/storm/lib/log4j-core-2.8..jar:/home/hadoop/app/storm/lib/reflectasm-1.10..jar:/home/hadoop/app/storm/lib/log4j-over-slf4j-1.6..jar:/home/hadoop/app/storm/lib/minlog-1.3..jar:/home/hadoop/app/storm/lib/kryo-3.0..jar:/home/hadoop/app/storm/lib/objenesis-2.1.jar:/home/hadoop/app/storm/lib/disruptor-3.3..jar:/home/hadoop/app/storm/lib/storm-core-1.1..jar:/home/hadoop/app/storm/lib/servlet-api-2.5.jar:/home/hadoop/app/storm/lib/asm-5.0..jar:/home/hadoop/app/storm/lib/log4j-slf4j-impl-2.8..jar:/home/hadoop/app/storm/lib/log4j-api-2.8..jar:/home/hadoop/app/storm/lib/ring-cors-0.1..jar:/home/hadoop/app/storm/lib/slf4j-api-1.7..jar:/home/hadoop/app/storm/lib/clojure-1.7..jar:/home/hadoop/storm2.jar:/home/hadoop/app/storm/conf:/home/hadoop/app/storm/bin -Dstorm.jar=/home/hadoop/storm2.jar -Dstorm.dependency.jars= -Dstorm.dependency.artifacts={} storm.TopoMain
[main] WARN o.a.s.u.Utils - STORM-VERSION new 1.1. old null
[main] INFO o.a.s.StormSubmitter - Generated ZooKeeper secret payload for MD5-digest: -:-
[main] INFO o.a.s.u.NimbusClient - Found leader nimbus : alamps:
[main] INFO o.a.s.s.a.AuthUtils - Got AutoCreds []
[main] INFO o.a.s.u.NimbusClient - Found leader nimbus : alamps:
[main] INFO o.a.s.StormSubmitter - Uploading dependencies - jars...
[main] INFO o.a.s.StormSubmitter - Uploading dependencies - artifacts...
[main] INFO o.a.s.StormSubmitter - Dependency Blob keys - jars : [] / artifacts : []
[main] INFO o.a.s.StormSubmitter - Uploading topology jar /home/hadoop/storm2.jar to assigned location: /home/hadoop/app/storm/storm-local/nimbus/inbox/stormjar-408de160-c6d7-4d2c-895a-1416d94ea4a2.jar
[main] INFO o.a.s.StormSubmitter - Successfully uploaded topology jar to assigned location: /home/hadoop/app/storm/storm-local/nimbus/inbox/stormjar-408de160-c6d7-4d2c-895a-1416d94ea4a2.jar
[main] INFO o.a.s.StormSubmitter - Submitting topology demotopo2 in distributed mode with conf {"topology.acker.executors":,"storm.zookeeper.topology.auth.scheme":"digest","storm.zookeeper.topology.auth.payload":"-8576047804864739509:-7581013764627825431","topology.workers":,"topology.debug":true}
[main] WARN o.a.s.u.Utils - STORM-VERSION new 1.1. old 1.1.
[main] INFO o.a.s.StormSubmitter - Finished submitting topology: demotopo2
storm 001的更多相关文章
- storm实战:基于storm,kafka,mysql的实时统计系统
公司对客户开放多个系统,运营人员想要了解客户使用各个系统的情况,在此之前,数据平台团队已经建设好了统一的Kafka消息通道. 为了保证架构能够满足业务可能的扩张后的性能要求,选用storm来处理各个应 ...
- Kafka+Storm+HDFS整合实践
在基于Hadoop平台的很多应用场景中,我们需要对数据进行离线和实时分析,离线分析可以很容易地借助于Hive来实现统计分析,但是对于实时的需求Hive就不合适了.实时应用场景可以使用Storm,它是一 ...
- 参考storm中的RotatingMap实现key超时处理
storm0.8.1以后的RotatingMap完全可以独立于storm用来实现hashmap的key超时删除,并调用回调函数 RotatingMap.java: import java.util.H ...
- Storm系列二: Storm拓扑设计
Storm系列二: Storm拓扑设计 在本篇中,我们就来根据一个案例,看看如何去设计一个拓扑, 如何分解问题以适应Storm架构,同时对Storm拓扑内部的并行机制会有一个基本的了解. 本章代码都在 ...
- Storm如何保证可靠的消息处理
作者:Jack47 PS:如果喜欢我写的文章,欢迎关注我的微信公众账号程序员杰克,两边的文章会同步,也可以添加我的RSS订阅源. 本文主要翻译自Storm官方文档Guaranteeing messag ...
- Storm
2016-11-14 22:05:29 有哪些典型的Storm应用案例? 数据处理流:Storm可以用来处理源源不断流进来的消息,处理之后将结果写入到某个存储中去.不像其它的流处理系统,Storm不 ...
- Storm介绍(一)
作者:Jack47 PS:如果喜欢我写的文章,欢迎关注我的微信公众账号程序员杰克,两边的文章会同步,也可以添加我的RSS订阅源. 内容简介 本文是Storm系列之一,介绍了Storm的起源,Storm ...
- 理解Storm并发
作者:Jack47 PS:如果喜欢我写的文章,欢迎关注我的微信公众账号程序员杰克,两边的文章会同步,也可以添加我的RSS订阅源. 注:本文主要内容翻译自understanding-the-parall ...
- Storm构建分布式实时处理应用初探
最近利用闲暇时间,又重新研读了一下Storm.认真对比了一下Hadoop,前者更擅长的是,实时流式数据处理,后者更擅长的是基于HDFS,通过MapReduce方式的离线数据分析计算.对于Hadoop, ...
随机推荐
- MVC 实用构架实战(一)——项目结构搭建
一.前言 在<上篇>中,已经把项目整体结构规划做了个大概的规划.在本文中,将使用代码的方式来一一解说各个层次.由于要搭建一个基本完整的结构,可能文章会比较长.另外,本系列主要出于实用的目的 ...
- 根据后台加载数据,添加loading动画
<script> var current = 0; var hit = @hits; $(this).scroll(function(){ var viewHeight =$(this). ...
- 洛谷P3248 树 [HNOI2016] 主席树+倍增+分治
正解:主席树+倍增+分治 解题报告: 传送门! 首先看到这题会想到之前考过的这题 但是那题其实简单一些,,,因为那题只要用个分治+预处理就好,只是有点儿思维难度而已 这题就不一样,因为它说了是按照原树 ...
- 写一致性原理以及quorum机制
(1)consistency,one(primary shard),all(all shard),quorum(default)我们在发送任何一个增删改操作的时候,比如 PUT /index/type ...
- 【Python】【面试必看】Python笔试题
前言 现在面试测试岗位,一般会要求熟悉一门语言(python/java),为了考验求职者的基本功,一般会出 2 个笔试题,这些题目一般不难,主要考察基本功.要是给你一台电脑,在编辑器里面边写边调试,没 ...
- dedecms批量删除文档关键词可以吗
这几天在重新整服务器,几个站点都是用dedecms搭建的,版本相对比较早,虽然都已经打了补丁,但客户还是在纠结,所以就下载了新的系统进行搭建(注意编码要和原来的一样),导入数据,一切安好,可发现后台有 ...
- RzCheckTree基本使用
procedure TForm1.Button1Click(Sender: TObject); var i: Integer; begin //循环读取勾选节点代码及内容 //StateIndex 1 ...
- 下载ez_setup
1.下载ez_setup链接:https://pypi.org/project/ez_setup/#files
- 云计算概述及Centos7下安装kvm虚拟机
云计算(cloud computing)是基于互联网的相关服务的增加.使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源 云计算到底是什么? 按定义:云计算指的是一种使用模式,是基 ...
- sap component 导航 链接
1: 定义一个导航链接名字,这个名子如果在程序中遇到(该名字会在程序中使用),就会触发这样一个导航. 导航有两个view,一个原来的view,一个出发abc之后的target view,也就是目标视图 ...