Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

Yoiu can assume that a = c = 1 in all test cases.

 

容斥原理的裸题

 #include<stdio.h>
#include<string.h>
#include<algorithm>
#include<math.h>
using namespace std;
typedef long long ll; const int maxn=2e5+; int pnum[maxn][],num[maxn]; void init(){
memset(pnum,,sizeof(pnum));
memset(num,,sizeof(num));
for(int i=;i<=;++i){
if(!num[i]){
pnum[i][++num[i]]=i;
for(int j=;i*j<=;++j){
pnum[i*j][++num[i*j]]=i;
}
}
}
} int main(){
init();
int T;
scanf("%d",&T);
for(int q=;q<=T;++q){
int a,b,c,d,k;
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
if(!k){
printf("Case %d: 0\n",q);
continue;
}
a=b/k;b=d/k;
if(a>b){c=a;a=b;b=c;}
ll ans=;
if(a>=)ans+=b;
for(int p=;p<=a;++p){
ll res=;
for(int i=;i<(<<num[p]);++i){
int bit=;
ll mul=;
for(int j=;j<=num[p];++j){
if(i&(<<(j-))){
++bit;
mul*=pnum[p][j];
}
}
if(bit%)res+=(b/mul-(p-)/mul);
else res-=(b/mul-(p-)/mul);
}
ans+=b-(p-)-res;
}
printf("Case %d: %lld\n",q,ans);
}
return ;
}

hdu1695 GCD 容斥原理的更多相关文章

  1. 51nod 1678 lyk与gcd | 容斥原理

    51nod 200题辣ψ(`∇´)ψ !庆祝! 51nod 1678 lyk与gcd | 容斥原理 题面 这天,lyk又和gcd杠上了. 它拥有一个n个数的数列,它想实现两种操作. 1:将 ai 改为 ...

  2. hdu1695 GCD 莫比乌斯反演做法+枚举除法的取值 (5,7),(7,5)看做同一对

    /** 题目:hdu1695 GCD 链接:http://acm.hdu.edu.cn/status.php 题意:对于给出的 n 个询问,每次求有多少个数对 (x,y) , 满足 a ≤ x ≤ b ...

  3. [hdu1695] GCD ——欧拉函数+容斥原理

    题目 给定两个区间[1, b], [1, d],统计数对的个数(x, y)满足: \(x \in [1, b]\), \(y \in [1, d]\) ; \(gcd(x, y) = k\) HDU1 ...

  4. HDU1695 GCD (欧拉函数+容斥原理)

    F - GCD Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Stat ...

  5. HDU1695:GCD(容斥原理+欧拉函数+质因数分解)好题

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题目解析: Given 5 integers: a, b, c, d, k, you're to ...

  6. hdu1695 GCD2 容斥原理 求x属于[1,b]与y属于[1,d],gcd(x,y)=k的对数。(5,7)与(7,5)看作同一对。

    GCD Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Submission(s): Accepted Sub ...

  7. ACM学习历程—HDU1695 GCD(容斥原理 || 莫比乌斯)

    Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = ...

  8. hdu1695 GCD

    http://acm.hdu.edu.cn/showproblem.php?pid=16951 /** 大意: a<=x<=b , c<= y <= d ,求在此范围内 有多少 ...

  9. HDU 1695 GCD#容斥原理

    http://acm.hdu.edu.cn/showproblem.php?pid=1695 翻译题目:给五个数a,b,c,d,k,其中恒a=c=1,x∈[a,b],y∈[c,d],求有多少组(x,y ...

随机推荐

  1. assert用法

    assert宏的原型定义在<assert.h>中,其作用是如果它的条件返回错误,则终止程序执行,原型定义: void assert( int expression ); assert的作用 ...

  2. js-数组方法的使用和详谈

    写博客的同时也是对自己知识的一次全面总结,方便自己日后复习.今天总结一下JS中Array的所有方法和技巧,对算法题算是一个基础了,有不足的地方,还望童鞋们指出来,一起进步. 在总结方法之前,提到一点, ...

  3. Jdbc连接数据库基本步骤

    Jdbc连接数据库的基本步骤: package demo.jdbc; import java.sql.Connection; import java.sql.DriverManager; import ...

  4. python,判断操作系统是windows,linux

    import sys,platform print(sys.platform) print(platform.system()) sys.platform: 获取当前系统平台. platform.sy ...

  5. 简单选择排序(Simple Selection Sort)

    body, table{font-family: 微软雅黑; font-size: 13.5pt} table{border-collapse: collapse; border: solid gra ...

  6. java修饰符用法

    public:本类可使用,子类可使用,同一包内的类可使用,不同包内的类可使用 protected:本类可使用,子类可使用(不同包内的子类也可使用),同一包内的类可使用 default(当不写修饰符时) ...

  7. SPOJ - AMR11H (容斥原理)

    Enough with this Harry Potter, please! What are we, twelve-year olds?  Let's get our teeth into some ...

  8. Ajax 以及 前端JSP页面如何查看数值

    $.ajax({ url: ctx + "/unit/rsdl/qyjy/getDljgCode", type: "post", success: functi ...

  9. synchronized(六)

    package com.bjsxt.base.sync006;/** * 锁对象的改变问题 * @author alienware * */public class ChangeLock { priv ...

  10. C#清理所有正在使用的资源

    namespace QQFrm{    partial class Form1    {        /// <summary>        /// 必需的设计器变量.        ...