[SDOI2010]古代猪文



$ solution: $

这道题感觉综合性极强,用到了许多数论中的知识:

  1. 质因子,约数,组合数
  2. 欧拉定理
  3. 卢卡斯定理
  4. 中国剩余定理

首先我们读题,发现题目需要我们枚举k(就是n的所有约数),并且对于每一个k都要用一个组合数算出其情况数(读题:不过具体是哪k分之一。这句话说明我们可以从n中取出任意k个字,所以情况数就是 $ C(_n^k) $ )(然后因为我们求的组合数范围有点大,所以需要用卢卡斯定理来求组合数(接下来我们会发现模数其实比较小))。但是这道题目把所有情况数(设有tot个情况),求为 $ G^{tot} $ 作答案输出。

众所周知,指数是不能直接取模的,所以我们要用到欧拉定理(注意欧拉定理建立在 $ gcd(G,999911659)=1 $ 的情况下,所以读入时要特判!)。

$ G{tot}=G{(tot\ mod \ \phi(P)+\phi(P))}\ mod(P) $

因为我们的模数为999911659(质数),所以我们其实就是要求这个东西:

$ G^{(tot\ mod \ 999911658+999911658)} $

但是我们发现虽然我们现在可以取模了,但是999911658并不是一个质数,而我们求tot的时候是需要用卢卡斯的,所以我们必须保证模数是一个质数且不能太大。所以我们又得用上中国剩余定理, $ 999911658=2\times 3\times 4679\times 35617 $

于是我们分别求出在 $ mod\ 2 \ ,mod\ 3,mod \ 4679,mod \ 35617 $ 意义下的所有tot,然后就需要中国剩余定理解出我们真正的 $ mod \ 999911658 $ 意义下的tot是多少,然后就可以直接搞快速幂求答案了!



$ code: $

#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set> #define ll long long
#define db double
#define mod 999911658
#define rg register int using namespace std; ll n,g,ans;
ll a[4];
ll jc[40005];
ll m[4]={2,3,4679,35617}; inline ll qr(){
char ch;
while((ch=getchar())<'0'||ch>'9');
ll res=ch^48;
while((ch=getchar())>='0'&&ch<='9')
res=res*10+(ch^48);
return res;
} inline ll ksm(ll x,ll y,ll p){
ll res=1; x%=p;
while(y){
if(y&1)res=res*x%p;
x=x*x%p; y>>=1;
}return res;
} inline ll c(ll x,ll y,ll p){ //组合数
if(x<y)return 0;
return jc[x]%p*ksm(jc[y],p-2,p)%p*ksm(jc[x-y],p-2,p)%p;//现求逆元
} inline ll lc(ll x,ll y,ll p){ //卢卡斯
if(x<y)return 0; if(!x)return 1;
return c(x%p,y%p,p)*lc(x/p,y/p,p)%p;
} int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
n=qr(); g=qr();
if(n==mod+1||g==mod+1){//特判
puts("0"); return 0;
}
for(rg k=0;k<4;++k){ jc[0]=jc[1]=1; //
for(rg i=2;i<=40000;++i)jc[i]=jc[i-1]*i%m[k]; //求出阶乘
for(rg i=1,j=sqrt(n);i<=j;++i){ //枚举约数
if(n%i!=0)continue;
a[k]=(a[k]+lc(n,i,m[k]))%m[k];
if(n==i*i)continue;
a[k]=(a[k]+lc(n,n/i,m[k]))%m[k];//n/i是较大的约数
}
}
for(rg i=0;i<4;++i)
ans=(ans+a[i]*(mod/m[i])%mod*ksm(mod/m[i],m[i]-2,m[i]))%mod;//中国剩余定理
printf("%lld\n",ksm(g,ans,mod+1));
return 0;
}

[SDOI2010]古代猪文 (欧拉,卢卡斯,中国剩余)的更多相关文章

  1. 【题解】P2480 [SDOI2010]古代猪文 - 卢卡斯定理 - 中国剩余定理

    P2480 [SDOI2010]古代猪文 声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。 题目描述 猪王国的文明源远流长,博大精 ...

  2. BZOJ 1951: [Sdoi2010]古代猪文( 数论 )

    显然答案是G^∑C(d,N)(d|N).O(N^0.5)枚举N的约数.取模的数999911659是质数, 考虑欧拉定理a^phi(p)=1(mod p)(a与p互质), 那么a^t mod p = a ...

  3. 1951: [Sdoi2010]古代猪文

    1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 2171  Solved: 904[Submit][Status] ...

  4. BZOJ 1951: [Sdoi2010]古代猪文 [Lucas定理 中国剩余定理]

    1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 2194  Solved: 919[Submit][Status] ...

  5. 洛咕 P2480 [SDOI2010]古代猪文

    洛咕 P2480 [SDOI2010]古代猪文 题目是要求\(G^{\sum_{d|n}C^d_n}\). 用费马小定理\(G^{\sum_{d|n}C^d_n\text{mod 999911658} ...

  6. 【BZOJ1951】[SDOI2010]古代猪文

    [BZOJ1951][SDOI2010]古代猪文 题面 bzoj 洛谷 题解 题目实际上是要求 $ G^{\sum d|n\;C_n^d}\;mod \; 999911659 $ 而这个奇怪的模数实际 ...

  7. 【BZOJ1951】[Sdoi2010]古代猪文 Lucas定理+CRT

    [BZOJ1951][Sdoi2010]古代猪文 Description 求$X=\sum\limits_{d|n}C_n^d$,$Ans=G^X (\mod 999911659)$. Input 有 ...

  8. 洛谷 P2480 [SDOI2010]古代猪文 解题报告

    P2480 [SDOI2010]古代猪文 题目背景 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" ...

  9. 【bzoj1951】: [Sdoi2010]古代猪文 数论-中国剩余定理-Lucas定理

    [bzoj1951]: [Sdoi2010]古代猪文 因为999911659是个素数 欧拉定理得 然后指数上中国剩余定理 然后分别lucas定理就好了 注意G==P的时候的特判 /* http://w ...

随机推荐

  1. target存放的是编译后的.class文件地方 默认情况下不会讲非class文件放入进入 如果要使用非.class文件 需要通过增加配置方式自动加入文件

    target存放的是编译后的.class文件地方 默认情况下不会讲非class文件放入进入 如果要使用非.class文件 需要通过增加配置方式自动加入文件

  2. 51nod-1459-迷宫游戏

    题意:中文题目.. 解题思路:我的做法就是单源最短路中加个记录分数的数组,如果dis[i]到dis[x]的距离可以被优化,那就连记录分数的数组一起优化,如果第二条路和第一条路的距离相等,那就取最大的分 ...

  3. iOS开发中@property的属性weak nonatomic strong readonly等

    请看  https://www.cnblogs.com/liubeimeng/p/4244686.html

  4. BZOJ3172[Tjoi2013]单词——AC自动机(fail树)

    题目描述 某人读论文,一篇论文是由许多单词组成.但他发现一个单词会在论文中出现很多次,现在想知道每个单词分别在论文中出现多少次. 输入 第一个一个整数N,表示有多少个单词,接下来N行每行一个单词.每个 ...

  5. 注册页面手机验证码无跳转接收[html+js+ajax+php]

    [学习笔记] 来源:注册时需要使用短信验证码,但是注册的时候,点击接收验证码时,会产生跳转(尼玛,这不是我想要的啊!o(╥﹏╥)o) 查询资料和看书之后,知道使用js+ajax可以实现,就从网上找了一 ...

  6. POJ1905-Expanding Rods-二分答案

    一根细棒升温时会变长,在两面墙中间,会变成一个弓形. 给出变长后的长度,求新的细棒中心与没伸长时的中心的距离. 简单的数学推导后就可以二分答案了,一开始没完全掌握二分的姿势,wa了好多.而且poj d ...

  7. day12-13 文件操作b模式

    为什么需要用到二进制的形式?我们默认的r w a 其实是rt wt at 即txt模式如果是图片,视频,音频,是无法用txt打开的,只能用b模式处理 b 模式是以字节形式打开 f = open(&qu ...

  8. 自学Python1.4-Centos内vim中文乱码问题

    自学Python之路 自学Python1.4-Centos内vim中文乱码问题 1. 登陆的系统---区域语言设置 1.1查看安装中文包: 查看系统是否安装中文语言包 (列出所有可用的公共语言环境的名 ...

  9. 自学Python2.1-基本数据类型-字符串方法 下

    自学Python之路 自学Python2.1-基本数据类型-字符串方法 下 class str(object): """ str(object='') -> str ...

  10. CF1114E Arithmetic Progression(交互题,二分,随机算法)

    既然是在CF上AC的第一道交互题,而且正是这场比赛让我升紫了,所以十分值得纪念. 题目链接:CF原网 题目大意:交互题. 有一个长度为 $n$ 的序列 $a$,保证它从小到大排序后是个等差数列.你不知 ...