BZOJ4426 :最大生产率(贪心+决策单调性DP)
题意:给出N个人,现在让你分P组,每组的工作效率是最小结束时间-最大开始时间,要求每一组的效率的正数,求最大效率和。N<1000
思路: 把包含至少一个其他的分到A组;否则到B组。
A组的要么单独分到一组,要么和它包含的某一个在一组(可以反证,假设已经分好组了,现在把不是单独分组的A加进去,如果分到不是包含关系的里面去,只会把答案变小)。
分组可以用栈进行。 而不是N^2枚举,因为多个相同的时候我们可以要保留一个作为最小的一个分到B组。
然后,现在A里面的没有包含关系了,我们可以排序,排序后一定是相邻的分到同一组,这里DP即可。
枚举单独分组的A,加上dp[][]跟新最大值即可。
原题是N<200的,我们可以用O(N^3)的DP来做。BZOJ上的N是1000的,我们需要优化,这种相邻分组的,估计要四边形不等式优化。果然是有决策单调性的,我们可以用分治来优化。 分P组,我们就P次分治。 然而我wa了N多次,因为我把不合法的部分continue了,事实上,不合法的也要更新,这样的mid才是ok的,不然单调性会出问题。
#include<bits/stdc++.h>
#define pii pair<int,int>
#define ll long long
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define rep2(i,a,b) for(int i=b;i>=a;i--)
using namespace std;
const int maxn=;
const int inf=;
pii a[maxn];int tot,cnt,ans=-inf;
int vis[maxn],dp[maxn][maxn],len[maxn],mp[maxn][maxn];
void solve(int p,int L,int R,int l,int r)
{
if(L>R) return ;
int Mid=(L+R)>>,res=-inf,pos=l;
rep2(i,l,min(r,Mid-)){
if(mp[i+][Mid]>&&dp[i][p-]+mp[i+][Mid]>res) {
res=dp[i][p-]+mp[i+][Mid]; pos=i;
}
}
dp[Mid][p]=res;
solve(p,L,Mid-,l,pos);
solve(p,Mid+,R,pos,r);
}
int main()
{
int N,P;
scanf("%d%d",&N,&P);
rep(i,,N) scanf("%d%d",&a[i].first,&a[i].second);
sort(a+,a+N+);
rep(i,,N)
rep(j,i+,N)
if(a[i].second>=a[j].second){ vis[i]=; break;}
rep(i,,N)
if(vis[i]) len[++tot]=a[i].second-a[i].first;
else a[++cnt]=a[i];
sort(len+,len+tot+); reverse(len+,len+tot+);
rep(i,,tot) len[i]+=len[i-]; rep(i,,cnt){
int Mx=a[i].second,Mn=a[i].first;
rep(j,i,cnt){
Mx=min(Mx,a[j].second),Mn=max(Mn,a[j].first);
mp[i][j]=Mx-Mn;
}
} rep(i,,cnt) rep(j,,P) dp[i][j]=-inf;
dp[][]=;
rep(i,,min(P,cnt))
solve(i,i,cnt,,cnt-); rep(i,max(P-cnt,),tot){
if(dp[cnt][P-i]>)
ans=max(ans,len[i]+dp[cnt][P-i]);
} printf("%d\n",ans);
return ;
}
BZOJ4426 :最大生产率(贪心+决策单调性DP)的更多相关文章
- luogu P1721 [NOI2016]国王饮水记 斜率优化dp 贪心 决策单调性
LINK:国王饮水记 看起来很不可做的样子. 但实际上还是需要先考虑贪心. 当k==1的时候 只有一次操作机会.显然可以把那些比第一个位置小的都给扔掉. 然后可以得知剩下序列中的最大值一定会被选择. ...
- CF321E Ciel and Gondolas 【决策单调性dp】
题目链接 CF321E 题解 题意:将\(n\)个人分成\(K\)段,每段的人两两之间产生代价,求最小代价和 容易设\(f[k][i]\)表示前\(i\)个人分成\(k\)段的最小代价和 设\(val ...
- BZOJ2216 [Poi2011]Lightning Conductor 【决策单调性dp】
题目链接 BZOJ2216 题解 学过高中数学都应知道,我们要求\(p\)的极值,参变分离为 \[h_j + sqrt{|i - j|} - h_i \le p\] 实际上就是求\(h_j + sqr ...
- 洛谷 P3515 [ POI 2011 ] Lightning Conductor —— 决策单调性DP
题目:https://www.luogu.org/problemnew/show/P3515 决策单调性... 参考TJ:https://www.cnblogs.com/CQzhangyu/p/725 ...
- LOJ2074/2157 JSOI2016/POI2011 Lightning Conductor 决策单调性DP
传送门 我们相当于要求出\(f_i = \max\limits_{j=1}^{n} (a_j + \sqrt{|i-j|})\).这个绝对值太烦人了,考虑对于\(i>j\)和\(i<j\) ...
- Wannafly Camp 2020 Day 3F 社团管理 - 决策单调性dp,整体二分
有 \(n\) 个数构成的序列 \({a_i}\),要将它划分为 \(k\) 段,定义每一段的权值为这段中 \((i,j) \ s.t. \ i<j,\ a_i=a_j\) 的个数,求一种划分方 ...
- BZOJ1563:[NOI2009]诗人小G(决策单调性DP)
Description Input Output 对于每组数据,若最小的不协调度不超过1018,则第一行一个数表示不协调度若最小的不协调度超过1018,则输出"Too hard to arr ...
- 【bzoj4709】[Jsoi2011]柠檬 决策单调性+dp
Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,000) 只,按顺序串在树枝上.为了方便,我们从 ...
- bzoj 2216: [Poi2011]Lightning Conductor【决策单调性dp+分治】
参考:https://blog.csdn.net/clove_unique/article/details/57405845 死活不过样例看了题解才发现要用double.... \[ a_j \leq ...
随机推荐
- Python3+smtplib+poplib+imaplib实现发送和收取邮件(以qq邮箱为例)
一.说明 1.1 程序说明 (1)smtp是邮件发送协议:pop和imap都是邮件接收协议,两者的区别通常的说法是imap的操作会同步到邮箱服务器而pop不会,表现上我也不是很清楚 (2)本程序实现使 ...
- Pinpoint是一个开源的 APM (Application Performance Management/应用性能管理)工具,用于基于java的大规模分布式系统,基于Google Dapper论文
Pinpoint是一个开源的 APM (Application Performance Management/应用性能管理)工具,用于基于java的大规模分布式系统,基于Google Dapper论文 ...
- 使用Postman在Chrome下进行rest请求测试
1.首先下载postman,我已经下载好,放在云盘里了. http://pan.baidu.com/s/1c1YoGKS 密码 dgfw 2.打开Chrome,点击更多工具->扩展程序~打开. ...
- 【Query】使用java对mysql数据库进行查询操作
操作步骤: 1.加载数据库驱动(先在工程里加载数据库对应的驱动包) 2.获取连接 3.根据连接建立一个可执行sql的对象 4.执行sql语句 5.关闭连接 代码: package database; ...
- Win10系列:UWP界面布局进阶2
为了让用户可以在流畅浏览应用界面的同时提供与应用相关的功能按钮,Windows 10系统在用户界面当中引入了侧边栏,侧边栏可以在用户有需要对应用或者系统进行操作时显示,在没有需要操作的时候自动隐藏,并 ...
- js评分
js评分 原理:给ele挂载一个自定义属性保存选中的星星数,鼠标经过时,显示所在星数的评价内容,以及给他星星亮起来,鼠标移开时显示的星星数时选择的星星数,没选的话是默认星星数,点击时,将选中的星 ...
- 快递小哥逆袭自传:用了6年时间做到了IT部门主管
在我30岁生日那天,终于收到升职的通知,自己如愿的也从一名小小程序员升职成为IT主管,负责公司硬件设备驱动程序开发项目,工资也从原来月薪10K变到现在月薪20K.或许对于很多人而言,在三十岁的时候,可 ...
- OOP⑸
1.封装: 继承: extends java只支持单根继承!(一个类只能有一个直接的父类) 是代码重用的一种方式! 将子类共有的属性和方法提取到父类中去! Object:超类/基类==>java ...
- MySQL字符集与校对
一.什么是字符集与校对 1.字符集与校对 字符集是指一种从二进制编码到某种字符符号的映射. 校队是指一组用于某个字符集的配许规则. 2.utf8与utf8mb4 标准的UTF-8字符集编码是可以使用1 ...
- Centos7 LNMP 一键安装
首页: https://lnmp.org/ 安装包生成页: https://lnmp.org/auto.html