HDU - 4370 0 or 1
0 or 1
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2811 Accepted Submission(s): 914
Besides,Xij meets the following conditions:
1.X12+X13+...X1n=1
2.X1n+X2n+...Xn-1n=1
3.for each i (1<i<n), satisfies ∑Xki (1<=k<=n)=∑Xij (1<=j<=n).
For example, if n=4,we can get the following equality:
X12+X13+X14=1
X14+X24+X34=1
X12+X22+X32+X42=X21+X22+X23+X24
X13+X23+X33+X43=X31+X32+X33+X34
Now ,we want to know the minimum of ∑Cij*Xij(1<=i,j<=n) you can get.
For sample, X12=X24=1,all other Xij is 0.
For each test case ,the first line contains one integer n (1<n<=300).
The next n lines, for each lines, each of which contains n integers, illustrating the matrix C, The j-th integer on i-th line is Cij(0<=Cij<=100000).
1 2 4 10
2 0 1 1
2 2 0 5
6 3 1 2
/*
HDU 4370 0 or 1
转换思维的题啊,由一道让人不知如何下手的题,转换为了最短路
基本思路就是把矩阵看做一个图,图中有n个点,1号点出度为1,
n号点入度为1,其它点出度和入度相等,路径长度都是非负数, 等价于一条从1号节点到n号节点的路径,故Xij=1表示需要经
过边(i,j),代价为Cij。Xij=0表示不经过边(i,j)。注意到Cij非负
且题目要求总代价最小,因此最优答案的路径一定可以对应一条简单路径。 最终,我们直接读入边权的邻接矩阵,跑一次1到n的最短路即可,记最短路为path。 漏了如下的情况B:
从1出发,走一个环(至少经过1个点,即不能
是自环),回到1;从n出发,走一个环(同理),回到n。
也就是1和n点的出度和入度都为1,其它点的出度和入度为0. 由于边权非负,于是两个环对应着两个简单环。 因此我们可以从1出发,找一个最小花费环,记代价为c1,
再从n出发,找一个最小花费环,记代价为c2。
(只需在最短路算法更新权值时多加一条记录即可:if(i==S) cir=min(cir,dis[u]+g[u][i])) 故最终答案为min(path,c1+c2)
*/
/*
本程序用SPFA来完成最短路。
但是由于要计算从出发点出发的闭环的路径长度。
所以要在普通SPFA的基础上做点变化。 就是把dist[start]设为INF。同时一开始并不是让出发点入队,而是让
出发点能够到达的点入队。
*/
//以上来自kuangbin的blog #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include <queue>
#include <vector>
#include<bitset>
using namespace std;
typedef long long LL;
const int maxn = ;
const int mod = +;
typedef pair<int,int> pii;
#define X first
#define Y second
#define pb push_back
//#define mp make_pair
#define ms(a,b) memset(a,b,sizeof(a)) const int inf = 0x3f3f3f3f;
int cost[maxn][maxn];
int dist[maxn];
int que[maxn];
bool vis[maxn]; void spfa(int st,int n){
int fro = ,rear = ;
for(int i=;i<=n;i++){
if(i==st){
dist[i]=inf;
vis[i]=false;
}else if(cost[st][i]!=inf){
dist[i]=cost[st][i];
que[rear++]=i;
vis[i]=true;
}else{
dist[i]=inf;
vis[i]=false;
}
} while(fro!=rear){
int u = que[fro++];
for(int v=;v<=n;v++){
if(dist[v]>dist[u]+cost[u][v]){
dist[v]=dist[u]+cost[u][v];
if(!vis[v]){
vis[v]=true;
que[rear++]=v;
if(rear>=maxn) rear=;
}
}
}
vis[u]=false;
if(fro>=maxn) fro=;
}
} int main(){
int n;
while(~scanf("%d",&n)){
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
scanf("%d",&cost[i][j]);
}
}
spfa(,n);
int ans=dist[n];
int loop1=dist[];
spfa(n,n);
int loop2=dist[n];
ans=min(ans,loop1+loop2);
cout<<ans<<endl;
}
}
HDU - 4370 0 or 1的更多相关文章
- HDU 4370 0 or 1 (最短路+最小环)
0 or 1 题目链接: Rhttp://acm.hust.edu.cn/vjudge/contest/122685#problem/R Description Given a n*n matrix ...
- HDU - 4370 0 or 1 最短路
HDU - 4370 参考:https://www.cnblogs.com/hollowstory/p/5670128.html 题意: 给定一个矩阵C, 构造一个A矩阵,满足条件: 1.X12+X1 ...
- HDU 4370 0 or 1(spfa+思维建图+计算最小环)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4370 题目大意:有一个n*n的矩阵Cij(1<=i,j<=n),要找到矩阵Xij(i< ...
- HDU 4370 0 or 1 (最短路)
[题目链接](http://acm.hdu.edu.cn/showproblem.ph Problem Description Given a n/n matrix Cij (1<=i,j< ...
- 思维题(转换) HDU 4370 0 or 1
题目传送门 题意:题目巨晦涩的传递出1点和n点的初度等于入度等于1, 其余点出度和入度相等 分析:求最小和可以转换成求最短路,这样符合条件,但是还有一种情况.1点形成一个环,n点也形成一个环,这样也是 ...
- (中等) HDU 4370 0 or 1,建模+Dijkstra。
Description Given a n*n matrix C ij (1<=i,j<=n),We want to find a n*n matrix X ij (1<=i,j&l ...
- HDU 4370 0 or 1 (01规划)【Dijkstra】||【spfa】
<题目链接> 题目大意: 一个n*n的01矩阵,满足以下条件 1.X12+X13+...X1n=12.X1n+X2n+...Xn-1n=13.for each i (1<i<n ...
- hdu 4370 0 or 1,最短路
题目描述 给定n * n矩阵C ij(1 <= i,j <= n),我们要找到0或1的n * n矩阵X ij(1 <= i,j <= n). 此外,X ij满足以下条件: 1. ...
- HDU 4370 0 or 1(转化为最短路)题解
思路:虽然是最短路专题里的,但也很难想到是最短路,如果能通过这些关系想到图论可能会有些思路.我们把X数组看做邻接矩阵,那么三个条件就转化为了:1.1的出度为1:2.n的入度为1:3.2~n-1的出度等 ...
随机推荐
- PAT 1033 旧键盘打字
https://pintia.cn/problem-sets/994805260223102976/problems/994805288530460672 旧键盘上坏了几个键,于是在敲一段文字的时候, ...
- ubuntu美化 mac风格
安装tweak sudo apt install gnome-tweak-tool sudo apt install chrome-gnome-shell https://extensions.gno ...
- python 协程库gevent学习--gevent源码学习(二)
在进行gevent源码学习一分析之后,我还对两个比较核心的问题抱有疑问: 1. gevent.Greenlet.join()以及他的list版本joinall()的原理和使用. 2. 关于在使用mon ...
- USDT(omniCore)测试环境搭建
一.测试环境搭建. 注:由于window版本的omni出现同步不了的问题,推荐使用linux系统进行usdt测试链的搭建. 1.下载omnicore: wget https://bintray.com ...
- Lucene 分析的意思是按照某种规则进行内容拆分 支持模糊搜索
Lucene 分析的意思是按照某种规则进行内容拆分 里面的域的值是拆分后的内容
- Linux系统——程序员跳槽必备
相信在看这篇文章的你,曾经或者现在是否跳槽呢,在北上广一线城市,你是否还在挣着那可怜巴巴的工资,过着拮据生活呢?但是自己想跳槽,却没有一技之长或者是自己的技术找工作太难了,那么我建议你学习下linux ...
- ansible系列8-SSH连接和执行性能优化
1. 当你的SSH的版本高于5.6时 我们可以直接修改 /etc/ansible/ansible.cfg里面的参数 ssh_args = -C -o ControlMaster=auto -o Con ...
- ansible系列4-关闭ssh首次连接时提示
在ansible配置文件中找到 /etc/ansible/ansible.cfg 方法1 在配置文件中找到 了解到问题原因为,我们了解到进行ssh连接时,可以使用-o参数将StrictHostKeyC ...
- MyBatis在表名作为参数时遇到的问题
之前在用MyBatis的时候没用过表名作为参数,最近使用到了. 基于注释使用MyBatis的Dao层代码如下: @Repository public interface Base1102Dao { @ ...
- M - Help Hanzo LightOJ - 1197 (大区间求素数)
题意: 求[a,b]之间的素数的个数 数很大...数组开不起 所以要想到转化 因为小于等于b的合数的最小质因子 一定小于等于sqrt(b),所以只需要求出来[0,sqrt(b)]的素数 然后取倍数删 ...