K-Means ++ 和 kmeans 区别
Kmeans算法的缺陷
聚类中心的个数K 需要事先给定,但在实际中这个 K 值的选定是非常难以估计的,很多时候,事先并不知道给定的数据集应该分成多少个类别才最合适
Kmeans需要人为地确定初始聚类中心,不同的初始聚类中心可能导致完全不同的聚类结果。(可以使用Kmeans++算法来解决)
针对上述第2个缺陷,可以使用Kmeans++算法来解决
K-Means ++ 算法
k-means++算法选择初始seeds的基本思想就是:初始的聚类中心之间的相互距离要尽可能的远。
从输入的数据点集合中随机选择一个点作为第一个聚类中心
对于数据集中的每一个点x,计算它与最近聚类中心(指已选择的聚类中心)的距离D(x)
选择一个新的数据点作为新的聚类中心,选择的原则是:D(x)较大的点,被选取作为聚类中心的概率较大
重复2和3直到k个聚类中心被选出来
利用这k个初始的聚类中心来运行标准的k-means算法
从上面的算法描述上可以看到,算法的关键是第3步,如何将D(x)反映到点被选择的概率上,一种算法如下:
先从我们的数据库随机挑个随机点当“种子点”
对于每个点,我们都计算其和最近的一个“种子点”的距离D(x)并保存在一个数组里,然后把这些距离加起来得到Sum(D(x))。
然后,再取一个随机值,用权重的方式来取计算下一个“种子点”。这个算法的实现是,先取一个能落在Sum(D(x))中的随机值Random,然后用Random -= D(x),直到其<=0,此时的点就是下一个“种子点”。
重复2和3直到k个聚类中心被选出来
利用这k个初始的聚类中心来运行标准的k-means算法
可以看到算法的第三步选取新中心的方法,这样就能保证距离D(x)较大的点,会被选出来作为聚类中心了。至于为什么原因比较简单,如下图 所示:
假设A、B、C、D的D(x)如上图所示,当算法取值Sum(D(x))*random时,该值会以较大的概率落入D(x)较大的区间内,所以对应的点会以较大的概率被选中作为新的聚类中心。
---------------------
摘自:https://blog.csdn.net/chlele0105/article/details/12997391
K-Means ++ 和 kmeans 区别的更多相关文章
- 【转】算法杂货铺——k均值聚类(K-means)
k均值聚类(K-means) 4.1.摘要 在前面的文章中,介绍了三种常见的分类算法.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应.但是很多时 ...
- (ZT)算法杂货铺——k均值聚类(K-means)
https://www.cnblogs.com/leoo2sk/category/273456.html 4.1.摘要 在前面的文章中,介绍了三种常见的分类算法.分类作为一种监督学习方法,要求必须事先 ...
- 第十篇:K均值聚类(KMeans)
前言 本文讲解如何使用R语言进行 KMeans 均值聚类分析,并以一个关于人口出生率死亡率的实例演示具体分析步骤. 聚类分析总体流程 1. 载入并了解数据集:2. 调用聚类函数进行聚类:3. 查看聚类 ...
- 机器学习之路:python k均值聚类 KMeans 手写数字
python3 学习使用api 使用了网上的数据集,我把他下载到了本地 可以到我的git中下载数据集: https://github.com/linyi0604/MachineLearning 代码: ...
- KNN 与 K - Means 算法比较
KNN K-Means 1.分类算法 聚类算法 2.监督学习 非监督学习 3.数据类型:喂给它的数据集是带label的数据,已经是完全正确的数据 喂给它的数据集是无label的数据,是杂乱无章的,经过 ...
- java泛型--问号?和T或E或K或V的区别
所谓泛型,就是在定义类.接口.方法.参数或成员变量的时候,指定它们操作对象的类型为通用类型. 使用 尖括号 <> 操作符 (The diamond operator )表示泛型, 尖括号内 ...
- K 均值算法(K-means)
K-means算法是最简单的一种聚类算法.算法的目的是使各个样本与所在类均值的误差平方和达到最小(这也是评价K-means算法最后聚类效果的评价标准) K-means聚类算法的一般步骤: 1. 初始化 ...
- 吴裕雄 python 机器学习——K均值聚类KMeans模型
import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...
- 软件——机器学习与Python,聚类,K——means
K-means是一种聚类算法: 这里运用k-means进行31个城市的分类 城市的数据保存在city.txt文件中,内容如下: BJ,2959.19,730.79,749.41,513.34,467. ...
随机推荐
- PHP中SESSION自定义会话管理器
<?php class CustomSession implements SessionHandlerInterface{ private $link; private $lifetime; p ...
- Spring-json依赖
<dependency> <groupId>com.fasterxml.jackson.core</groupId> <artifactId>jacks ...
- Python深入:Distutils发布Python模块--转载
https://blog.csdn.net/gqtcgq/article/details/49255995 Distutils可以用来在Python环境中构建和安装额外的模块.新的模块可以是纯Pyth ...
- React Native原生模块向JS传递数据的几种方式(Android)
一般情况可以分为三种方式: 1. 通过回调函数Callbacks的方式 2. 通过Promises的异步的方式 3. 通过发送事件的事件监听的方式. 参考文档:传送门
- PHP直接将文件流转换为字符串
有时候不需要图片直接输出到浏览器,需要如下处理! 输出到浏览器 $qrCode = new QrCode(); $qrCode ->setText('Life is too short to b ...
- vim的简单使用
vim的学习曲线相当的大(参看各种文本编辑器的学习曲线),所以,如果你一开始看到的是一大堆VIM的命令分类,你一定会对这个编辑器失去兴趣的.下面的文章翻译自<Learn Vim Progress ...
- [转][cesium]1.添加本地服务器
转自:http://www.cnblogs.com/fuckgiser/p/5633748.html 此系列cesium总教程: https://www.cnblogs.com/fuckgiser/ ...
- typeScript入门基础 (1)
1.ts是js的超集,可使用es5,es6的代码 2. ts的安装与编译: a. 首先需要Node.js环境 . 相信都有,略过. 不会的请百度,或者留言. b. npm install - ...
- Android IPC 结篇
一.概述 Android 的 IPC 方式有 Bundle .共享文件.AIDL .Messenger .ContentProvider .Socket ,我们在实现进程间通信时要选择哪一种方式来实现 ...
- vuex深入理解 modules
一.什么是module? 背景:在Vue中State使用是单一状态树结构,应该的所有的状态都放在state里面,如果项目比较复杂,那state是一个很大的对象,store对象也将对变得非常大,难于管理 ...