题目链接:https://vjudge.net/contest/103424#problem/H

题目大意:
与01背包模板题类似,只不过要我们求第K个最大的总价值。

解题分析:

其基本思想是将每个状态都表示成有序队列,将状态转移方程中的max/min转化成有序队列的合并。这里仍然以01背包为例讲解一下。
首 先看01背包求最优解的状态转移方程:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}。如果要求第K优解,那么 状态f[i][v]就应该是一个大小为K的数组f[i][v][1..K]。其中f[i][v][k]表示前i个物品、背包大小为v时,第k优解的值。 “f[i][v]是一个大小为K的数组”这一句,熟悉C语言的同学可能比较好理解,或者也可以简单地理解为在原来的方程中加了一维。显然f[i][v] [1..K]这K个数是由大到小排列的,所以我们把它认为是一个有序队列。

然 后原方程就可以解释为:f[i][v]这个有序队列是由f[i-1][v]和f[i-1][v-c[i]]+w[i]这两个有序队列合并得到的。有序队列 f[i-1][v]即f[i-1][v][1..K],f[i-1][v-c[i]]+w[i]则理解为在f[i-1][v-c[i]][1..K]的每 个数上加上w[i]后得到的有序队列。合并这两个有序队列并将结果的前K项储存到f[i][v][1..K]中的复杂度是O(K)。最后的答案是f[N] [V][K]。总的复杂度是O(VNK)。

01背包再清楚不过了,主要还是是有序队列合并的问题。                       转载于>>>

这道题可以比喻为,要计算整个年级的前n名,可以拿每班的前n名出来排序

 

现在01背包的基础上多加一维,dp[v][k],表示在v空间下第k大的价值。。。

更新的时候有两个数组A、B,然后合并AB,选出AB里面前k个最大的。合并到dp中。。。

#include <iostream>
#include <cstdio>
using namespace std;
#define max(a,b) ((a)>(b)?(a):(b))
const int maxn = ;
int main()
{
int T;
scanf("%d", &T);
int dp[maxn][], val[maxn], vol[maxn], A[], B[];
while (T--)
{
int n, v, k;
scanf("%d %d %d", &n, &v, &k);
int i, j, kk;
for (i = ; i<n; i++) scanf("%d", &val[i]);
for (i = ; i<n; i++) scanf("%d", &vol[i]);
memset(dp, , sizeof(dp));
int a, b, c;
for (i = ; i<n; i++)
for (j = v; j >= vol[i]; j--)
{
for (kk = ; kk <= k; kk++)
{
A[kk] = dp[j - vol[i]][kk] + val[i];
B[kk] = dp[j][kk];
}
A[kk] = -, B[kk] = -; //定义边界
a = b = c = ;
while (c <= k && (A[a] != - || B[b] != -))
{
if (A[a] > B[b]) //在两个数中挑选较大的那个
dp[j][c] = A[a++];
else
dp[j][c] = B[b++];
if (dp[j][c] != dp[j][c - ]) //反之,如果dp[j][c]==dp[j][c-1]的话,c的值不增加,等到下一个A或者B数组中的数,将dp[j][c]覆盖,作用是去除相同的情况
c++;
}
} printf("%d\n", dp[v][k]);
}
return ;
}

2018-04-30

HDU 2639 骨头收集者 II【01背包 】+【第K优决策】的更多相关文章

  1. HDU2639Bone Collector II[01背包第k优值]

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  2. HDU 2639 (01背包第k优解)

    /* 01背包第k优解问题 f[i][j][k] 前i个物品体积为j的第k优解 对于每次的ij状态 记下之前的两种状态 i-1 j-w[i] (选i) i-1 j (不选i) 分别k个 然后归并排序并 ...

  3. (01背包 第k优解) Bone Collector II(hdu 2639)

    http://acm.hdu.edu.cn/showproblem.php?pid=2639       Problem Description The title of this problem i ...

  4. HDU 2602 Bone Collector 骨头收集者【01背包】

    题目链接:https://vjudge.net/contest/103424#problem/A 题目大意: 第一行输入几组数据,第二行第一个数字代表物体个数,第二个数代表总体积.需要注意的是,第三排 ...

  5. HDU 3639 Bone Collector II(01背包第K优解)

    Bone Collector II Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  6. 杭电 2639 Bone Collector II【01背包第k优解】

    解题思路:对于01背包的状态转移方程式f[v]=max(f[v],f[v-c[i]+w[i]]);其实01背包记录了每一个装法的背包值,但是在01背包中我们通常求的是最优解, 即为取的是f[v],f[ ...

  7. HDU - 2639 Bone Collector II (01背包第k大解)

    分析 \(dp[i][j][k]\)为枚举到前i个物品,容量为j的第k大解.则每一次状态转移都要对所有解进行排序选取前第k大的解.用两个数组\(vz1[],vz2[]\)分别记录所有的选择情况,并选择 ...

  8. hdu2639 01背包第K优解

    #include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #i ...

  9. 01背包-第k优解

    The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup&quo ...

随机推荐

  1. 出现fonts/fontawesome-webfont.woff?v=4.5.0 net::ERR_ABORTED

    虽然网页正常显示和运行,但是有2个字体文件出现404错误. 原因:服务器没有配置MIME类型而已. 1. 在IIS网站中,找打网站对应的MIME类型,双击. 2.能看到此网站对应的MIME类型,点击右 ...

  2. 列式数据库~clickhouse 副本集架构的搭建

    clickhouse 搭建副本集 一 原理:  1 依赖ZK,ZK的基础上,ZK存储数据库元数据 2  使用复制表引擎创建复制表,包括ZK路径和副本名,相同ZK路径的表可以相互复制 3  复制表本身拥 ...

  3. JXL导出Excel(只支持xls版本)——(一)

    注意: 导出的后缀是xls可以直接打开,如果导出的后缀是xlsx打开报错,需要手动将名字改为xls才可以打开.也就是JXL不可以导出xlsx的excel. Jar包

  4. Debian 9 源配置

    Debian 9: deb http://mirrors.163.com/debian/ stretch main non-free contrib deb http://mirrors.163.co ...

  5. Levmar 配置

    Levmar配置 原文有些错误,在我的博客里已经改好了:http://blog.sina.com.cn/s/blog_45b747f70101he1t.html 如果6或者7自由度机器人的运动学逆解无 ...

  6. SpringBoot修改Servlet相关配置

    第一种方式在配置文件中进行修改 server.port=8081 server.servlet.context-path=/springboot server.tomcat.uri-encoding= ...

  7. canvas图像裁剪、压缩、旋转

    转载于:http://www.cnblogs.com/dailc/p/7843204.html 前言 前段时间遇到了一个移动端对图像进行裁剪.压缩.旋转的需求.考虑到已有各轮子的契合度都不高,于是自己 ...

  8. Android 颜色透明度换算

    每次开发的时候,UI在设计图中标注的颜色都是类似于#FF0000(红色),这倒没什么,但是呢后面却标注了30%的透明度,这下抓狂了,透明度怎么计算?不用着急,不用你算,收藏我这篇文章即可. 颜色简介 ...

  9. 【转载】JavaScript中的属性:如何遍历属性

    转载自:http://www.cnblogs.com/ziyunfei/archive/2012/11/03/2752905.html 在JavaScript中,遍历一个对象的属性往往没有在其他语言中 ...

  10. STM32应用实例十:简析STM32 I2C通讯死锁问题

    I2C接口是一种使用非常普遍的MCU与外部设备的接口方式,在STM32中也集成了I2C接口,我们也常常使用它来与外围的传感器等设备通讯. 最近在我们使用STM32F1VET6读取压力和温湿度传感器数据 ...