Problem Description
Steph is extremely obsessed with “sequence problems” that are usually seen on magazines: Given the sequence 11, 23, 30, 35, what is the next number? Steph always finds them too easy for such a genius like himself until one day Klay comes up with a problem and ask him about it.

Given two integer sequences {ai} and {bi} with the same length n, you are to find the next n numbers of {ai}: an+1…a2n. Just like always, there are some restrictions on an+1…a2n: for each number ai, you must choose a number bk from {bi}, and it must satisfy ai≤max{aj-j│bk≤j<i}, and any bk can’t be chosen more than once. Apparently, there are a great many possibilities, so you are required to find max{∑2nn+1ai} modulo 109+7 .

Now Steph finds it too hard to solve the problem, please help him.

 
Input
The input contains no more than 20 test cases.
For each test case, the first line consists of one integer n. The next line consists of n integers representing {ai}. And the third line consists of n integers representing {bi}.
1≤n≤250000, n≤a_i≤1500000, 1≤b_i≤n.
 
Output
For each test case, print the answer on one line: max{∑2nn+1ai} modulo 109+7。
 
Sample Input
4
8 11 8 5
3 1 4 2
 
Sample Output
27

Hint

For the first sample: 1. Choose 2 from {bi}, then a_2…a_4 are available for a_5, and you can let a_5=a_2-2=9;

2. Choose 1 from {bi}, then a_1…a_5 are available for a_6, and you can let a_6=a_2-2=9;
 
 
题意:给一个长度为n的a数组和b数组,然后给a在后面再填充n个数字,要求每次填充都是在b中选择一个数,设挑选的数为bx,设j为我目前要填充的数的序号,那么你填充的数就是a中序号从(bx)~(j-1)中最大的那个a[i]-i,最终使填充数的和最大。
题解:
1.要使最终结果最大的话,每次填充的数都尽可能的大,因为最先填的数减的数最小,所以对b来说先从小到大排序,能保证先填充的数最大。
2.为了维持每次挑选的是最大的数,可以用一个优先队列来维护,按照它的a[i]-i的值来进行排序。
3.最精华的地方,因为b已经排过序了,然后每次加的是最大的数,所以我只要保证队列的top的id要大于等于目前的b[i]即可。
 
每次用优先队列来维护最大最小值的题目我用sort来做超时一发的时候都觉得自己简直是太傻逼了///
为自己续一秒。。。

 #include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<string.h>
#include<queue>
#include<vector>
using namespace std; #define MOD 1000000000+7 struct node
{
long long num,ip,dis;
}; long long b[]; struct cmp
{
bool operator()(node q,node p)
{
return q.dis<p.dis;
}
}; int main()
{
long long n;
while(~scanf("%lld",&n))
{
priority_queue<node,vector<node>,cmp>Q;
node a;
for(int i=;i<=n;i++)
{
scanf("%lld",&a.num);
a.ip=i;
a.dis=a.num-a.ip;
Q.push(a);
}
for(int i=;i<=n;i++)
scanf("%lld",&b[i]);
sort(b+,b++n);
long long res=;
for(int i=;i<=n;i++)
{
while(Q.top().ip<b[i])
Q.pop();
node tmp=Q.top();
res+=tmp.dis;
res%=MOD;
tmp.ip=n+i;
tmp.num=tmp.dis;
tmp.dis-=tmp.ip;
Q.push(tmp);
}
printf("%lld\n",res);
}
return ;
}

HDU 6047 17多校 Maximum Sequence(优先队列)的更多相关文章

  1. HDU 6140 17多校8 Hybrid Crystals(思维题)

    题目传送: Hybrid Crystals Problem Description > Kyber crystals, also called the living crystal or sim ...

  2. HDU 6143 17多校8 Killer Names(组合数学)

    题目传送:Killer Names Problem Description > Galen Marek, codenamed Starkiller, was a male Human appre ...

  3. HDU 3130 17多校7 Kolakoski(思维简单)

    Problem Description This is Kolakosiki sequence: 1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1……. This seq ...

  4. HDU 6103 17多校6 Kirinriki(双指针维护)

    Problem Description We define the distance of two strings A and B with same length n isdisA,B=∑i=0n− ...

  5. HDU 6106 17多校6 Classes(容斥简单题)

    Problem Description The school set up three elective courses, assuming that these courses are A, B, ...

  6. HDU 6049 17多校2 Sdjpx Is Happy(思维题difficult)

    Problem Description Sdjpx is a powful man,he controls a big country.There are n soldiers numbered 1~ ...

  7. HDU 6045 17多校2 Is Derek lying?

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=6045 Time Limit: 3000/1000 MS (Java/Others)    Memory ...

  8. HDU 6124 17多校7 Euler theorem(简单思维题)

    Problem Description HazelFan is given two positive integers a,b, and he wants to calculate amodb. Bu ...

  9. HDU 6038 17多校1 Function(找循环节/环)

    Problem Description You are given a permutation a from 0 to n−1 and a permutation b from 0 to m−1. D ...

随机推荐

  1. CSU OJ 1340 A Sample Problem

    Description My girlfriend loves 7 very much, she thinks it is lucky! If an integer contains one or m ...

  2. Redis(window版本)安装及使用

    1.打开redis官网http://redis.io/点击Download 2.往下拉,找到Windows,由图片中的文字可以看出Redis项目不正式支持Windows. 但是,Microsoft开放 ...

  3. ASP.NET Core WebAPI 开发-新建WebAPI项目 转

    转 http://www.cnblogs.com/linezero/p/5497472.html ASP.NET Core WebAPI 开发-新建WebAPI项目   ASP.NET Core We ...

  4. PHP手册-函数参考-加密扩展

    一.Crack.CSPRNG.Hash.Mcrypt.Mhash.OpenSSL.密码散列算法的对比   Crack CSPRNG Hash Mcrypt Mhash OpenSSL 密码散列算法 简 ...

  5. 从线程模型的角度看Netty的高性能

    转载:Netty(二) 从线程模型的角度看 Netty 为什么是高性能的? 传统 IO 在 Netty 以及 NIO 出现之前,我们写 IO 应用其实用的都是用 java.io.* 下所提供的包. 比 ...

  6. java多线程读一个变量需要加锁吗?

    如果只是读操作,没有写操作,则可以不用加锁,此种情形下,建议变量加上final关键字: 如果有写操作,但是变量的写操作跟当前的值无关联,且与其他的变量也无关联,则可考虑变量加上volatile关键字, ...

  7. 将16进制unsigned char数组转换成整数

    /** * 将unsigned char数组转换成long long数值 * {0x00 0x00 0x20 0x00}转换之后得到8192 * * @param str 数组 * @param le ...

  8. node代理服务器

    var express = require('express');var request = require('request');var app = express();var _URL = 'ht ...

  9. day4-python基础-运算符

    本章节主要说明Python的运算符.举个简单的例子 4 +5 = 9 . 例子中,4 和 5 被称为操作数,"+" 称为运算符. Python语言支持以下类型的运算符: 算术运算符 ...

  10. alpine linux docker 安装 lxml出错的解决办法。

    我习惯在docker当中用alpine来部署服务. 最近在部署flask时使用了 tiangolo/uwsgi-nginx-flask:python3.6-alpine3.7 这个镜像 别人写好的fl ...