Problem Description
Steph is extremely obsessed with “sequence problems” that are usually seen on magazines: Given the sequence 11, 23, 30, 35, what is the next number? Steph always finds them too easy for such a genius like himself until one day Klay comes up with a problem and ask him about it.

Given two integer sequences {ai} and {bi} with the same length n, you are to find the next n numbers of {ai}: an+1…a2n. Just like always, there are some restrictions on an+1…a2n: for each number ai, you must choose a number bk from {bi}, and it must satisfy ai≤max{aj-j│bk≤j<i}, and any bk can’t be chosen more than once. Apparently, there are a great many possibilities, so you are required to find max{∑2nn+1ai} modulo 109+7 .

Now Steph finds it too hard to solve the problem, please help him.

 
Input
The input contains no more than 20 test cases.
For each test case, the first line consists of one integer n. The next line consists of n integers representing {ai}. And the third line consists of n integers representing {bi}.
1≤n≤250000, n≤a_i≤1500000, 1≤b_i≤n.
 
Output
For each test case, print the answer on one line: max{∑2nn+1ai} modulo 109+7。
 
Sample Input
4
8 11 8 5
3 1 4 2
 
Sample Output
27

Hint

For the first sample: 1. Choose 2 from {bi}, then a_2…a_4 are available for a_5, and you can let a_5=a_2-2=9;

2. Choose 1 from {bi}, then a_1…a_5 are available for a_6, and you can let a_6=a_2-2=9;
 
 
题意:给一个长度为n的a数组和b数组,然后给a在后面再填充n个数字,要求每次填充都是在b中选择一个数,设挑选的数为bx,设j为我目前要填充的数的序号,那么你填充的数就是a中序号从(bx)~(j-1)中最大的那个a[i]-i,最终使填充数的和最大。
题解:
1.要使最终结果最大的话,每次填充的数都尽可能的大,因为最先填的数减的数最小,所以对b来说先从小到大排序,能保证先填充的数最大。
2.为了维持每次挑选的是最大的数,可以用一个优先队列来维护,按照它的a[i]-i的值来进行排序。
3.最精华的地方,因为b已经排过序了,然后每次加的是最大的数,所以我只要保证队列的top的id要大于等于目前的b[i]即可。
 
每次用优先队列来维护最大最小值的题目我用sort来做超时一发的时候都觉得自己简直是太傻逼了///
为自己续一秒。。。

 #include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<string.h>
#include<queue>
#include<vector>
using namespace std; #define MOD 1000000000+7 struct node
{
long long num,ip,dis;
}; long long b[]; struct cmp
{
bool operator()(node q,node p)
{
return q.dis<p.dis;
}
}; int main()
{
long long n;
while(~scanf("%lld",&n))
{
priority_queue<node,vector<node>,cmp>Q;
node a;
for(int i=;i<=n;i++)
{
scanf("%lld",&a.num);
a.ip=i;
a.dis=a.num-a.ip;
Q.push(a);
}
for(int i=;i<=n;i++)
scanf("%lld",&b[i]);
sort(b+,b++n);
long long res=;
for(int i=;i<=n;i++)
{
while(Q.top().ip<b[i])
Q.pop();
node tmp=Q.top();
res+=tmp.dis;
res%=MOD;
tmp.ip=n+i;
tmp.num=tmp.dis;
tmp.dis-=tmp.ip;
Q.push(tmp);
}
printf("%lld\n",res);
}
return ;
}

HDU 6047 17多校 Maximum Sequence(优先队列)的更多相关文章

  1. HDU 6140 17多校8 Hybrid Crystals(思维题)

    题目传送: Hybrid Crystals Problem Description > Kyber crystals, also called the living crystal or sim ...

  2. HDU 6143 17多校8 Killer Names(组合数学)

    题目传送:Killer Names Problem Description > Galen Marek, codenamed Starkiller, was a male Human appre ...

  3. HDU 3130 17多校7 Kolakoski(思维简单)

    Problem Description This is Kolakosiki sequence: 1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1……. This seq ...

  4. HDU 6103 17多校6 Kirinriki(双指针维护)

    Problem Description We define the distance of two strings A and B with same length n isdisA,B=∑i=0n− ...

  5. HDU 6106 17多校6 Classes(容斥简单题)

    Problem Description The school set up three elective courses, assuming that these courses are A, B, ...

  6. HDU 6049 17多校2 Sdjpx Is Happy(思维题difficult)

    Problem Description Sdjpx is a powful man,he controls a big country.There are n soldiers numbered 1~ ...

  7. HDU 6045 17多校2 Is Derek lying?

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=6045 Time Limit: 3000/1000 MS (Java/Others)    Memory ...

  8. HDU 6124 17多校7 Euler theorem(简单思维题)

    Problem Description HazelFan is given two positive integers a,b, and he wants to calculate amodb. Bu ...

  9. HDU 6038 17多校1 Function(找循环节/环)

    Problem Description You are given a permutation a from 0 to n−1 and a permutation b from 0 to m−1. D ...

随机推荐

  1. WCF开发实战系列二:使用IIS发布WCF服务 转

    转 http://www.cnblogs.com/poissonnotes/archive/2010/08/28/1811141.html 上一篇中,我们创建了一个简单的WCF服务,在测试的时候,我们 ...

  2. HomeBrew的安装和简单使用

    homebrew 官网 https://brew.sh/ 转自:http://blog.csdn.NET/maojudong/article/details/7918291 1.  前言 作为Linu ...

  3. 一、持久层框架(Hibernate)

    一.Hibernate 使用JDBC做数据库相关功能开发会做很多重复性的工作,创建连接,关闭连接,把字段逐一映射到属性中等.Hibernate把这些进行封装起来,使得数据库访问变得轻松简单. 1.创建 ...

  4. IDEA如何导入一个web+maven以及如何运行项目

    IDEA如何导入一个web+maven以及如何运行项目 然后就可以运行你的maven项目了....

  5. js浮点数相加、减、乘、除精确计算

    js 浮点数计算时 ,无缘无辜 后边冒出一堆 小数点………… 貌似js本身的问题,类型不定?????? 只能自己写函数处理..  http://blog.csdn.net/w4bobo/article ...

  6. #pragma 处理警告 clang diagnostic 的使用

    首先#pragma在本质上是声明,常用的功能就是注释,尤其是给Code分段注释:而且它还有另一个强大的功能是处理编译器警告,但却没有上一个功能用的那么多. clang diagnostic 是#pra ...

  7. nginx配置location总结及rewrite规则写法(2)

    2. Rewrite规则 rewrite功能就是,使用nginx提供的全局变量或自己设置的变量,结合正则表达式和标志位实现url重写以及重定向.rewrite只能放在server{},location ...

  8. Ubuntu中安装deb包程序

    deb是Debian Linux的安装格式,跟Red Hat Linux的rpm非常相似,最基本的安装命令是:dpkg -i file.deb dpkg 是Debian Package的简写,是为De ...

  9. Qt_阴影效果

    一.控件阴影效果 为子部件添加阴影比较简单,使用如下方式: QGraphicsDropShadowEffect *shadow_effect = new QGraphicsDropShadowEffe ...

  10. React中禁止chrome填充密码表单

    当 input 的 type="password" 时,chrome浏览器会以 type="password" 为标识记住输入的用户名和密码, 如果chrome ...