[OpenCV] Samples 16: Decompose and Analyse RGB channels
物体的颜色特征决定了灰度处理不是万能,对RGB分别处理具有相当的意义。
#include <iostream>
#include <stdio.h>
#include "cv.h"
#include <highgui.h>
#include <opencv2/opencv.hpp>
#include <opencv2/legacy/legacy.hpp>
#include <opencv2/nonfree/nonfree.hpp>
#include <opencv2/nonfree/features2d.hpp>
#include <opencv2/flann/flann.hpp> using namespace std;
using namespace cv; #define PATH_IMG01 "../lolo.jpg" IplImage *g_pGrayImage = NULL;
IplImage *g_pGrayImg4ChannelR = NULL;
IplImage *g_pGrayImg4ChannelG = NULL;
IplImage *g_pGrayImg4ChannelB = NULL; IplImage *g_pBinaryImg4ChannelR = NULL;
IplImage *g_pBinaryImg4ChannelG = NULL;
IplImage *g_pBinaryImg4ChannelB = NULL;
IplImage *g_pBinaryImg4ChannelC = NULL; const char *pstrWindowsToolBarName4ChB = "ToolBarName4ChannelB";
const char *pstrWindowsToolBarName4ChG = "ToolBarName4ChannelG";
const char *pstrWindowsToolBarName4ChR = "ToolBarName4ChannelR";
const char *pstrWindowsToolBarName4ChC = "ToolBarName4ChannelC"; const char *pstrWindowsSrcTitle = "SrcImageTitle";
const char *pstrWindowsBinaryTitle4ChB = "BinaryTitle4B";
const char *pstrWindowsBinaryTitle4ChG = "BinaryTitle4G";
const char *pstrWindowsBinaryTitle4ChR = "BinaryTitle4R";
const char *pstrWindowsBinaryTitle4ChC = "BinaryTitle4C"; const char *pstr_title_chB = "Binary Image for Channel B";
const char *pstr_title_chG = "Binary Image for Channel G";
const char *pstr_title_chR = "Binary Image for Channel R"; void on_trackbar_channelB(int pos)
{
Mat src = Mat(g_pGrayImg4ChannelB);
Mat dst;
IplImage img_out; ////////////////////////////////////////////////////////
GaussianBlur(src,dst,Size(,),,);
// medianBlur(src,dst,10);
// blur(src,dst,Size(5,5),Point(-1,-1));
// bilateralFilter(src,dst,25, 25*2, 25/2);
img_out = IplImage(dst);
//////////////////////////////////////////////////////// // (1)
cvThreshold(&img_out, g_pBinaryImg4ChannelB, pos, , CV_THRESH_BINARY); // (2)
int gap = ;
IplImage *pBinaryImg4ChannelB = cvCreateImage(cvGetSize(g_pGrayImg4ChannelB), IPL_DEPTH_8U, );
cvThreshold(&img_out, pBinaryImg4ChannelB, pos + gap, , CV_THRESH_BINARY); // (3)
IplImage *pBinaryImg4ChannelB_DV = cvCreateImage(cvGetSize(g_pBinaryImg4ChannelB), IPL_DEPTH_8U, );
cvAbsDiff(g_pBinaryImg4ChannelB, pBinaryImg4ChannelB, pBinaryImg4ChannelB_DV);
// cvShowImage(pstrWindowsBinaryTitle4ChB, pBinaryImg4ChannelB_DV);
cvShowImage(pstrWindowsBinaryTitle4ChB, g_pBinaryImg4ChannelB);
} void on_trackbar_channelG(int pos)
{
Mat src = Mat(g_pGrayImg4ChannelG);
Mat dst;
IplImage img_out; ////////////////////////////////////////////////////////
GaussianBlur(src,dst,Size(,),,);
img_out = IplImage(dst);
//////////////////////////////////////////////////////// // (1)
cvThreshold(&img_out, g_pBinaryImg4ChannelG, pos, , CV_THRESH_BINARY); // (2)
int gap = ;
IplImage *pBinaryImg4ChannelG = cvCreateImage(cvGetSize(g_pGrayImg4ChannelG), IPL_DEPTH_8U, );
cvThreshold(&img_out, pBinaryImg4ChannelG, pos + gap, , CV_THRESH_BINARY); // (3)
IplImage *pBinaryImg4ChannelG_DV = cvCreateImage(cvGetSize(g_pBinaryImg4ChannelG), IPL_DEPTH_8U, );
cvAbsDiff(g_pBinaryImg4ChannelG, pBinaryImg4ChannelG, pBinaryImg4ChannelG_DV);
// cvShowImage(pstrWindowsBinaryTitle4ChG, pBinaryImg4ChannelG_DV);
cvShowImage(pstrWindowsBinaryTitle4ChG, g_pBinaryImg4ChannelG);
} void on_trackbar_channelR(int pos)
{
Mat src = Mat(g_pGrayImg4ChannelR);
Mat dst;
IplImage img_out; ////////////////////////////////////////////////////////
GaussianBlur(src,dst,Size(,),,);
img_out = IplImage(dst);
// cvShowImage( "Task 8*: Gaussian Blur", &img_out);
// cvWaitKey(0);
//////////////////////////////////////////////////////// // (1)
cvThreshold(&img_out, g_pBinaryImg4ChannelR, pos, , CV_THRESH_BINARY); // (2)
int gap = ;
IplImage *pBinaryImg4ChannelR = cvCreateImage(cvGetSize(g_pGrayImg4ChannelR), IPL_DEPTH_8U, );
cvThreshold(&img_out, pBinaryImg4ChannelR, pos + gap, , CV_THRESH_BINARY); // (3)
IplImage *pBinaryImg4ChannelR_DV = cvCreateImage(cvGetSize(g_pBinaryImg4ChannelR), IPL_DEPTH_8U, );
cvAbsDiff(g_pBinaryImg4ChannelR, pBinaryImg4ChannelR, pBinaryImg4ChannelR_DV);
// cvShowImage(pstrWindowsBinaryTitle4ChR, pBinaryImg4ChannelR_DV);
cvShowImage(pstrWindowsBinaryTitle4ChR, g_pBinaryImg4ChannelR);
} void on_trackbar_channelC(int pos)
{
cvOr(g_pBinaryImg4ChannelB, g_pBinaryImg4ChannelG, g_pBinaryImg4ChannelC);
cvOr(g_pBinaryImg4ChannelC, g_pBinaryImg4ChannelR, g_pBinaryImg4ChannelC); cvShowImage(pstrWindowsBinaryTitle4ChC, g_pBinaryImg4ChannelC);
} int main(void)
{
// 1. src image and resize.
Mat src = imread(PATH_IMG01);
const int zoom = ;
resize(src, src, Size(src.cols/zoom, src.rows/zoom)); IplImage srcImage = IplImage(src);
IplImage *pSrcImage = &srcImage; // 2. split r, g, b channel images.
Mat channel[]; split(pSrcImage, channel); // imshow("B",channel[0]);
// imshow("G",channel[1]);
// imshow("R",channel[2]);
// waitKey(0); IplImage img_channelB = IplImage(channel[]);
IplImage img_channelG = IplImage(channel[]);
IplImage img_channelR = IplImage(channel[]); g_pGrayImg4ChannelB = &img_channelB;
g_pGrayImg4ChannelG = &img_channelG;
g_pGrayImg4ChannelR = &img_channelR; // 3. get r, g, b binary images.
g_pBinaryImg4ChannelB = cvCreateImage(cvGetSize(g_pGrayImg4ChannelB), IPL_DEPTH_8U, );
g_pBinaryImg4ChannelG = cvCreateImage(cvGetSize(g_pGrayImg4ChannelG), IPL_DEPTH_8U, );
g_pBinaryImg4ChannelR = cvCreateImage(cvGetSize(g_pGrayImg4ChannelR), IPL_DEPTH_8U, ); // 4.1 show src image.
cvNamedWindow(pstrWindowsSrcTitle, CV_WINDOW_AUTOSIZE);
cvShowImage(pstrWindowsSrcTitle, pSrcImage); // 4.2 create r, g, b windows.
cvNamedWindow(pstrWindowsBinaryTitle4ChB, CV_WINDOW_AUTOSIZE);
cvNamedWindow(pstrWindowsBinaryTitle4ChG, CV_WINDOW_AUTOSIZE);
cvNamedWindow(pstrWindowsBinaryTitle4ChR, CV_WINDOW_AUTOSIZE); // 4.3 create toolbar for r, g, b windows.
int nThreshold = ;
cvCreateTrackbar(pstrWindowsToolBarName4ChB, pstrWindowsBinaryTitle4ChB, &nThreshold, , on_trackbar_channelB);
cvCreateTrackbar(pstrWindowsToolBarName4ChG, pstrWindowsBinaryTitle4ChG, &nThreshold, , on_trackbar_channelG);
cvCreateTrackbar(pstrWindowsToolBarName4ChR, pstrWindowsBinaryTitle4ChR, &nThreshold, , on_trackbar_channelR); // 4.4 create combine result show.
g_pBinaryImg4ChannelC = cvCreateImage(cvGetSize(g_pGrayImg4ChannelR), IPL_DEPTH_8U, );
cvNamedWindow(pstrWindowsBinaryTitle4ChC, CV_WINDOW_AUTOSIZE);
cvCreateTrackbar(pstrWindowsToolBarName4ChC, pstrWindowsBinaryTitle4ChC, &nThreshold, , on_trackbar_channelC); // 4.5 run.
on_trackbar_channelB();
on_trackbar_channelG();
on_trackbar_channelR();
on_trackbar_channelC(); cvWaitKey(); // 5. destroy trash.
cvDestroyWindow(pstrWindowsSrcTitle);
cvDestroyWindow(pstrWindowsBinaryTitle4ChB);
cvDestroyWindow(pstrWindowsBinaryTitle4ChG);
cvDestroyWindow(pstrWindowsBinaryTitle4ChR);
cvDestroyWindow(pstrWindowsBinaryTitle4ChC); cvReleaseImage(&pSrcImage);
cvReleaseImage(&g_pBinaryImg4ChannelB);
cvReleaseImage(&g_pBinaryImg4ChannelG);
cvReleaseImage(&g_pBinaryImg4ChannelR);
cvReleaseImage(&g_pBinaryImg4ChannelC); return ;
}
HSV channels 能更好地解决问题? 亮度60-80之间是一个不错的判定效果。
IplImage* pSrcHsv=cvCreateImage(cvGetSize(pSrcImage),IPL_DEPTH_8U,);
cvCvtColor(pSrcImage, pSrcHsv, CV_BGR2HSV); Mat channel[];
split(pSrcHsv, channel);
相关代码
通过亮度通道进行二值刷选后,再采用轮廓线判断继续缩小范围。
是否有判别基本几何形状的高效方法,找出其中的凸四边形?
Sol 01: “面积比”: size of contour/size of its bounding rectangle
[OpenCV] Samples 04: contours2
[OpenCV] Samples 05: convexhull
[OpenCV] Samples 16: Decompose and Analyse RGB channels的更多相关文章
- OpenCV中对Mat里面depth,dims,channels,step,data,elemSize和数据地址计算的理解
原文:OpenCV中对Mat里面depth,dims,channels,step,data,elemSize和数据地址计算的理解 Title : cv::Mat depth/dims/channels ...
- [OpenCV] Samples 10: imagelist_creator
yaml写法的简单例子.将 $ ./ 1 2 3 4 5 命令的参数(代表图片地址)写入yaml中. 写yaml文件. 参考:[OpenCV] Samples 06: [ML] logistic re ...
- JS-011-颜色进制转换(RGB转16进制;16进制转RGB)
在网页开发的时候,经常需要进行颜色设置,因而经常需要遇到进行颜色进制转换的问题,例如:RGB转16进制:16进制转RGB),前几天在测试的时候,发现网站的颜色进制转换某类16进制颜色(例如:#0000 ...
- js 颜色16进制转RGB方法
//颜色16进制转RGB方法 String.prototype.colorRgb = function(){ var sColor = this.toLowerCase(); //十六进制颜色值的正则 ...
- bgcolor RGB 和16进制之间的转换,16进制转RGB,源码
<p>bgcolor RGB 和16进制之间的转换,16进制转RGB,源码例如:<br /> 输入 201,255,201 转换成 #C9FFC9</p> < ...
- JS实现16进制和RGB转换
作为前端开发而言,不可避免的会遇到颜色取值,字符串和数字直接的转换,博主为此写了一个小工具,实现色值之间的在线转换. 前置知识点: parseInt, toString parseInt(value ...
- OpenCV中对Mat里面depth,dims,channels,step,data,elemSize和数据地址计算的理解 (转)
cv::Matdepth/dims/channels/step/data/elemSizeThe class Mat represents an n-dimensional dense numeric ...
- 访问图像中的像素[OpenCV 笔记16]
再更一发好久没更过的OpenCV,不过其实写到这个部分对计算机视觉算法有所了解的应该可以做到用什么查什么了,所以后面可能会更的慢一点吧,既然开了新坑,还是机器学习更有研究价值吧... 图像在内存中的存 ...
- OpenCV 学习笔记(9)RGB转换成灰度图像的一个常用公式Gray = R*0.299 + G*0.587 + B*0.114
https://blog.csdn.net/fly_wt/article/details/86432886 RGB转换成灰度图像的一个常用公式是:Gray = R*0.299 + G*0.587 + ...
随机推荐
- php基本类型
php是一种弱类型语言,即变量不需要声明为特定的数据类型,因此在代码编写过程中做'类型处理'很重要. 处理方法: 1.检测类型: 2.转换类型: 3.依赖良好清晰的文档. php类型检查函数: ...
- javascript中ajax的四大步骤
原生js中ajax写法一: function ajaxys(){ //1. 创建xhr对象 var xhr = new XMLHttpRequest();//XMLHttpRequest() // 2 ...
- db2报错信息
sqlcode sqlstate 说明000 00000 SQL语句成功完成01xxx SQL语句成功完成,但是有警告+012 01545 未限定的列名被解释为一个有相互关系的引用+098 01568 ...
- java之静态方法与非静态方法
1.静态方法最大的特点就是,不用生成类的实例对象,直接可以用. 2.它的语法格式:<类名|实例名>.<类变量名> 3.Java中的静态方法中,在方法声明时前面要加static ...
- c++文件打包工具实现
没事做就来写一个打包的工具吧.很多是网络上面找的,只是我把他修改一下合并在一起. // PacketFile.cpp : 定义控制台应用程序的入口点. #include "stdafx.h& ...
- Mac 安装配置nexus2.6 搭建Maven的中央仓库
今天配置java 环境,安装nexus 百度了好久才安装好,所以特别写下来 分享给同样遇到问题的你.废话不多说,直接上步骤 前置条件 :已经安装了JDK 下载nexus(http://www.sona ...
- android:ProgressBar控件
ProgressBar 用于在界面上显示一个进度条,表示我们的程序正在加载一些数据.它的用 法也非常简单,修改 activity_main.xml 中的代码,如下所示: <LinearLayou ...
- 【linux】linux下对java程序生成dump文件,并使用IBM Heap Analyzer进行分析,查找定位内存泄漏的问题代码
1.首先,java程序启动在linux,怎么生成dump文件? 1>第一步,首先你需要得到java程序的PID,最简单的方法使用如下命令 ps -ef|grep java 或者如果是docker ...
- 【C#】Visual Studio 2017 一边Debug,一边修改代码
好久没写C#了,最近在学习著名***工具 shadowsocks-windows 的源代码,想着可以边断点调试,边加上一些注释以方便理解,stackoverflow 和 msdn 随便翻了一下,竟发现 ...
- python 进程池pool简单使用
平常会经常用到多进程,可以用进程池pool来进行自动控制进程,下面介绍一下pool的简单使用. 需要主动是,在Windows上要想使用进程模块,就必须把有关进程的代码写if __name__ == ‘ ...