PTA 7-1 整数分解为若干项之和(20 分)
7-1 整数分解为若干项之和(20 分)
将一个正整数N分解成几个正整数相加,可以有多种分解方法,例如7=6+1,7=5+2,7=5+1+1,…。编程求出正整数N的所有整数分解式子。
输入格式:
每个输入包含一个测试用例,即正整数N (0<N≤30)。
输出格式:
按递增顺序输出N的所有整数分解式子。递增顺序是指:对于两个分解序列N1={n1,n2,⋯}和N2={m1,m2,⋯},若存在i使得n1=m1,⋯,ni=mi,但是ni+1<mi+1,则N1序列必定在N2序列之前输出。每个式子由小到大相加,式子间用分号隔开,且每输出4个式子后换行。
输入样例:
7
输出样例:
7=1+1+1+1+1+1+1;7=1+1+1+1+1+2;7=1+1+1+1+3;7=1+1+1+2+2
7=1+1+1+4;7=1+1+2+3;7=1+1+5;7=1+2+2+2
7=1+2+4;7=1+3+3;7=1+6;7=2+2+3
7=2+5;7=3+4;7=7
#include <bits/stdc++.h> using namespace std; const int maxn = 1010; int num[maxn]; int sum=0,n,ipos=0; int num_col = 0; void dfs(int x) { if(sum>n) return; else if(sum==n) { num_col++; printf("%d=%d",n,num[0]); for(int i=1;i<ipos;i++) printf("+%d",num[i]); if(num_col%4==0||ipos==1) printf("\n"); else printf(";"); } else if(sum<n) { for(int i=x;i<=n;i++) { sum+=i; num[ipos++] = i; dfs(i); sum-=i; ipos--; } } } int main() { scanf("%d",&n); dfs(1); return 0; }
PTA 7-1 整数分解为若干项之和(20 分)的更多相关文章
- 整数分解为若干项之和 - PAT
深度搜索,一开始没有想到,说明基本功还是不够啊,加油 //======================================================================= ...
- 7-19 求链式线性表的倒数第K项(20 分)(单链表定义与尾插法)
给定一系列正整数,请设计一个尽可能高效的算法,查找倒数第K个位置上的数字. 输入格式: 输入首先给出一个正整数K,随后是若干正整数,最后以一个负整数表示结尾(该负数不算在序列内,不要处理). 输出格式 ...
- 7-13 求链式线性表的倒数第K项(20 分)
给定一系列正整数,请设计一个尽可能高效的算法,查找倒数第K个位置上的数字. 输入格式: 输入首先给出一个正整数K,随后是若干正整数,最后以一个负整数表示结尾(该负数不算在序列内,不要处理). 输出格式 ...
- PTA 邻接表存储图的广度优先遍历(20 分)
6-2 邻接表存储图的广度优先遍历(20 分) 试实现邻接表存储图的广度优先遍历. 函数接口定义: void BFS ( LGraph Graph, Vertex S, void (*Visit)(V ...
- PTA 6-15 用单向循环链表实现猴子选大王 (20 分)
一群猴子要选新猴王.新猴王的选择方法是:让n只候选猴子围成一圈,从某位置起顺序编号为1~n号.每只猴子预先设定一个数(或称定数),用最后一只猴子的定数d,从第一只猴子开始报数,报到d的猴子即退出圈子: ...
- Vijos 1033 整数分解(版本2)
描述 整数分解(版本2) 一个正整数可以分解成若干个自然数之和.请你编一个程序,对于给出的一个正整数n(1<=n<=1500),求出满足要求的分解方案,并使这些自然数的乘积m达到最大. 例 ...
- [2022-2-18] OICLASS提高组模拟赛2 A·整数分解为2的幂
题目链接 问题 A: 整数分解为 2 的幂 题目描述 任何正整数都能分解成 2 的幂,给定整数 N,求 N 的此类划分方法的数量!由于方案数量较大,输出 Mod 1000000007 的结果. 比如 ...
- 使用List把一个长字符串分解成若干个短字符串
把一个长字符串分解成若干个固定长度的短字符串,由于事先不知道长字符串的长度,以及短字符串的数量,只能使用List. public static void get_list_sbody(String s ...
- 整数分解 && 质因数分解
输入整数(0-30)分解成所有整数之和.每四行换行一次. 一种方法是通过深度优先枚举出解.通过递归的方式来实现. #include <stdio.h> #include <strin ...
随机推荐
- Qt 事件机制
[1]事件 事件是可以被控件识别的操作.如按下确定按钮.选择某个单选按钮或复选框. 每种控件有自己可识别的事件,如窗体的加载.单击.双击等事件,编辑框(文本框)的文本改变事件等等. 事件就是用户对窗口 ...
- jsp页面报错 javax.servlet cannot be resolved to a type
需要引入 Tomcat 中的两个 jar 包: servlet-api jsp-api.jar
- RocketMQ 问题汇总
1. rocketMQ安装: 编译完成以后准备启动项目,注意:bin的位置是编译后target目录下,启动命令在这里. linux命令目录:你的目录/rocketmq-all-4.2.0/distri ...
- 算法提高 P0102
用户输入三个字符,每个字符取值范围是0-9,A-F.然后程序会把这三个字符转化为相应的十六进制整数,并分别以十六进制,十进制,八进制输出,十六进制表示成3位,八进制表示成4位,若不够前面补0.(不考虑 ...
- JustOj 2039: 成绩排名 (结构体排序)
题目描述 每次期末考试成绩出来之前的一段时间大豪哥心里都是痛苦的,总感觉自己会在班上排名特别差.所以当成绩出来以后大豪哥想快点知道班上的总排名,以便知道自己的排名.(PS:大豪哥班上有个学霸名叫日天, ...
- python 爬虫基础知识一
网络爬虫(又被称为网页蜘蛛,网络机器人,在FOAF社区中间,更经常的称为网页追逐者),是一种按照一定的规则,自动的抓取万维网信息的程序或者脚本. 网络爬虫必备知识点 1. Python基础知识2. P ...
- Javascript 面向对象编程1:封装
Javascript是一种基于对象(object-based)的语言,你遇到的所有东西几乎都是对象.但是,他又不是一种真正的面向对象编程语言,因为它的语法中没有class(类). 那么,如果我们要把& ...
- 怎样从外网访问内网Django?
本地安装了一个Django,只能在局域网内访问,怎样从外网也能访问到本地的Django呢?本文将介绍具体的实现步骤. 准备工作 安装并启动Django 默认安装的Django端口是8000. 实现步骤 ...
- OpenStack平台上,linux云主机可以使用xshell连接,但是无法xftp连接
笔者在OpenStack云平台上创建了CentOS6.6的云主机,用了一段时间后,发现xshell可以连接,但是xftp却连接不上. 于是进行伟大的百度操作,检查网络设置.ssh服务设置等,均正常,否 ...
- RTP/RTCP 和 SRTP/SRTCP协议(转)
源: RTP/RTCP 和 SRTP/SRTCP协议