国密 SM2 的非对称加密解密过程

椭圆曲线

椭圆曲线是由一组方程描述的点的集合:

y2 = x3 + ax + b 其中 a, b 满足 (4a3 + 27b2 ≠ 0)

SM2 定义了一个 sm2p256v1 的椭圆曲线方程

各种参数

BigInteger p = FromHex("FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF");
BigInteger a = FromHex("FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC");
BigInteger b = FromHex("28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCBD414D940E93");
BigInteger n = FromHex("FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF40939D54123");
BigInteger h = BigInteger.One; Point G coord: (22963146547237050559479531362550074578802567295341616970375194840604139615431, 85132369209828568825618990617112496413088388631904505083283536607588877201568)

公钥,私钥

  • 私钥:

可以随机生成一个 BigInteger D,必须符合区间 [1, n - 1]

  • 公钥:

私钥 D * G(Point) 得到的一个 Point: Q

隐函数微分 dy/dx = (3x² + a) / (2y)

椭圆曲线密码(Elliptic Curve Cryptography,ECC)的安全性主要基于椭圆曲线离散对数问题(Elliptic Curve Discrete Logarithm Problem,ECDLP)的难度。简单来说,如果知道椭圆曲线上的两个点P和Q,并且知道存在一个整数d,使得dP=Q(这里的乘法表示点的数乘,就是把点P加d次),那么想从P和Q推算出d是几乎不可能的。这就是椭圆曲线离散对数问题。

这个乘法异常的复杂 D * G 就是 D 个 G点相加,2 * G 就是过这个点的切线与椭圆曲线的交点,和 x 轴的对称点,还有有限域的处理,求同余...。

所以也能看出来知道公钥和 G 也很难求出 私钥 D

私钥和公钥的关系:

D * G = Q

加密过程

公钥: Q

  1. 随机生成一个 BigInteger K
  2. K * Q 生成一个 Point(x, y) KPB

C2: 每对原文 byte[] 每32个byte z循环处理,序号初始为1

32 和后续待处理字节长度取小值

  1. 对 KPB(x,y), 序号做摘要 记作 buf: byte[32]
  2. 这32个字节 分别和 buf的32个字节做异或运算 z[zOff + i] ^= buf[xOff + i];
  3. 序号 + 1 处理后续的

C1: k * G

C3: KPB.x 原文byte[], KPB.y 做摘要

解密过程

私钥: D

因为:C1 = K * G

所以 C1 * D = K * G * D = K * (G * D) = K * Q = KPB

然后: 异或运算满足 A ^ B ^ A = B

所以对 C2来相同的运算即可得到原文

C3用来验证是否一致

总结

知道密文和公钥无法解密,因为不知道随机生成的 K

C1 部分的生成和公私钥的生成是一模一样的,类似的原理很难通过 C1 和 G 倒推出K,解不了密

加密后占用空间 C2 和原文长度一致

C1 不压缩 标志位 + x + y = 65, C3 = 摘要长度 32 增大 97

C1 压缩 标志位 + x = 33 C3 = 摘要长度 32 增大 65

然后一般的结果有 C1C2C3 和 C1C3C2两种排列模式

实际情况中,针对这三部分有无数种基于 ASN.1 的包装方式,最终都是按照 C1C2C3 组装好进行解密

国密 SM2 的非对称加密解密过程的更多相关文章

  1. 推荐一款能支持国密SM2浏览器——密信浏览器

    密信浏览器( MeSince Browser )是基于Chromium开源项目开发的国密安全浏览器,支持国密算法和国密SSL证书,同时也支持国际算法及全球信任SSL证书:密信浏览器使用界面清新,干净. ...

  2. Java对称与非对称加密解密,AES与RSA

    加密技术可以分为对称与非对称两种. 对称加密,解密,即加密与解密用的是同一把秘钥,常用的对称加密技术有DES,AES等 而非对称技术,加密与解密用的是不同的秘钥,常用的非对称加密技术有RSA等 为什么 ...

  3. SM2的非对称加解密java工具类

    maven依赖 <dependency> <groupId>org.bouncycastle</groupId> <artifactId>bcprov- ...

  4. https的加密解密过程

    前置知识 SSL是90年代Netscape弄出来的一套东西,为的是解决HTTP协议明文传输数据的问题.后来SSL慢慢成了事实上的标准,于是IETF就把SSL标准化了,名字叫做TLS,TLS 1.0其实 ...

  5. 谈谈PBOC3.0中使用的国密SM2算法

    转载请注明出处 http://blog.csdn.net/pony_maggie/article/details/39780825 作者:小马 一 知识准备 SM2是国密局推出的一种他们自己说具有自主 ...

  6. 一个支持国密SM2/SM3/SM4/SM9/ZUC/SSL的密码工具箱

    转:https://blog.csdn.net/xuq09/article/details/91815366 The GmSSL Project网址:http://gmssl.org/docs/qui ...

  7. bouncycastle 国密SM2 API的使用

    摘要:本文不对SM2做过多的介绍,主要介绍java bouncycastle库关于SM2的相关API的使用及注意事项 1. SM2 签名: 注意: 1)签名格式ASN1(描述了一种对数据进行表示.编码 ...

  8. 使用java实现对称加密解密(AES),非对称加密解密(RSA)

    对称加密:双方采用同样的秘钥进行加密和解密.特点是速度快,但是安全性没有非对称加密高 非对称加密:接收方生成的公有秘钥公布给发送方,发送方使用该公有秘钥加密之后,发送给接收方,然后接收方使用私有秘钥解 ...

  9. CryptoAPI与openssl RSA非对称加密解密(PKCS1 PADDING)交互

    (以下代码中都只做测试用,有些地方没有释放内存...这个自己解决下) 1.RSA非对称的,首先提供一个供测试用的证书和私钥的数据 1)pem格式的证书和私钥(公私钥是对应的)的base64编码 voi ...

  10. golang实现aes-cbc-256加密解密过程记录

    我为什么吃撑了要实现go的aes-cbc-256加密解密功能? 之前的项目是用php实现的,现在准备用go重构,需要用到这个功能,这么常用的功能上网一搜一大把现成例子,于是基于go现有api分分钟实现 ...

随机推荐

  1. Geospatial Data 在 Nebula Graph 中的实践

    本文首发于 Nebula Graph Community 公众号 本文主要介绍了地理空间数据(Geospatial Data)以及它在 Nebula Graph 中的具体实践. Geospatial ...

  2. 使用debezium实现cdc实时数据同步功能记录

    Debezium 是一个用于变更数据捕获的开源分布式平台.能够保证应用程序就可以开始响应其他应用程序提交到您数据库的所有插入.更新和删除操作.Debezium 持久.快速,因此即使出现问题,您的应用程 ...

  3. 为Oracle链接服务器使用分布式事务

    1 现象 在SQL Server中创建指向Oracle的链接服务器,SQL语句在事务中向链接服务器插入数据.返回链接服务器无法启动分布式事务的报错. 2 解决 在Windows平台下,SQL Serv ...

  4. 记一次dockerfile无法构建问题追溯

    我有一个dockerfile如下: ENTRYPOINT ["/sbin/tini","-g", "--"] CMD /home/scrap ...

  5. 10、mysql的锁

    锁概述 锁是计算机协调多个进程或线程并发访问某一资源的机制(避免争抢). 在数据库中,除传统的计算资源(如 CPU.RAM.I/O 等)的争用以外,数据也是一种供许多用户共享的资源.如何保证数据并发访 ...

  6. Codeforces Round 638 (Div. 2)B. Phoenix and Beauty

    B. Phoenix and Beauty 这道题目学到的东西: 从给出的数据范围观察,得到一些有用信息(峰哥教的) 考虑无解的情况' 其实这题考虑怎么操作是比较难的,如果能想出来满足条件的结果就比较 ...

  7. beanstalkd轻量级消息队列的安装

    1.版本介绍 CentOS:CentOS Linux release 7.9.2009 (Core) beanstalkd:beanstalkd 1.10 2.安装 (1)先安装epel-releas ...

  8. 重新认识 tag 快照 git (项目临时添加需求,之前有分支合并,导致从节点拉分支不行了,因为没有tag快照)

    之前的tag认知 之前一直以为tag就是在git的提交commit上打一个标,然后可以拉出分支.之前没太重视. 因为我觉得 可以直接从某个commit直接拉出分支,这打不打tag无所谓 翻车现场 今天 ...

  9. C语言中的强制转换

    许久没有遇到的问题   C语言真是博大精深,越使用它,就越发感觉到它的威力和恐怖,最近在做算法的时候,遇到了一个强转的错误,把人折腾的够受,这次要好好梳理一下了,希望下次不能再犯此类的问题. 强制转换 ...

  10. 关于百分百浏览器(cent browser)无法使用QQ快捷登录问题

    个人比较喜欢用百分百浏览器,但是QQ似乎不允许此浏览器进行登录,参考了下网上提供的思路,研究解决了QQ无法登录的问题 主要就设置了下证书,详情步骤见下面图片