【八】强化学习之DDPG---PaddlePaddlle【PARL】框架{飞桨}
相关文章:
【一】飞桨paddle【GPU、CPU】安装以及环境配置+python入门教学
代码链接:码云:https://gitee.com/dingding962285595/parl_work ;github:https://github.com/PaddlePaddle/PARL
1. 连续动作空间
离散动作&连续动作
2.DDPG讲解Deep Deterministic Policy Gradient
- deep-神经网络--DNQ扩展
目标网络 target work
经验回放 replay memory
- Deterministic Policy Gradient
·Deterministic 直接输出确定的动作
·Policy Gradient 单步更新的policy网络
DDPG是DQN的扩展版本,可以扩展到连续控制动作空间
2.1 策略网络:
actor对外输出动作;critic会对每个输出的网络进行评估。刚开始随机参数初始化,然后根据reward不断地反馈。
![]()
![]()
目标网络target network +经验回放ReplayMemory
两个target_Q/P网络的作用是稳定Q网络里的Q_target 复制原网络一段时间不变。
2.2 经验回放ReplayMemory
用到数据:
Agent
把产生的数据传给algorithm
,algorithm
根据model
的模型结构计算出Loss
,使用SGD
或者其他优化器不断的优化,PARL
这种架构可以很方便的应用在各类深度强化学习问题中。
(1)Model
Model
用来定义前向(Forward
)网络,用户可以自由的定制自己的网络结构
class Model(parl.Model):
def __init__(self, act_dim):
self.actor_model = ActorModel(act_dim)
self.critic_model = CriticModel() def policy(self, obs):
return self.actor_model.policy(obs) def value(self, obs, act):
return self.critic_model.value(obs, act) def get_actor_params(self):
return self.actor_model.parameters()class ActorModel(parl.Model):
def __init__(self, act_dim):
hid_size = 100 self.fc1 = layers.fc(size=hid_size, act='relu')
self.fc2 = layers.fc(size=act_dim, act='tanh') def policy(self, obs):
hid = self.fc1(obs)
means = self.fc2(hid)
return means
class CriticModel(parl.Model):
def __init__(self):
hid_size = 100 self.fc1 = layers.fc(size=hid_size, act='relu')
self.fc2 = layers.fc(size=1, act=None) def value(self, obs, act):
concat = layers.concat([obs, act], axis=1)
hid = self.fc1(concat)
Q = self.fc2(hid)
Q = layers.squeeze(Q, axes=[1])
return Q
(2)Algorithm
Algorithm
定义了具体的算法来更新前向网络(Model
),也就是通过定义损失函数来更新Model
,和算法相关的计算都放在algorithm
中。
def _critic_learn(self, obs, action, reward, next_obs, terminal):
next_action = self.target_model.policy(next_obs)
next_Q = self.target_model.value(next_obs, next_action) terminal = layers.cast(terminal, dtype='float32')
target_Q = reward + (1.0 - terminal) * self.gamma * next_Q
target_Q.stop_gradient = True Q = self.model.value(obs, action)
cost = layers.square_error_cost(Q, target_Q)
cost = layers.reduce_mean(cost)
optimizer = fluid.optimizer.AdamOptimizer(self.critic_lr)
optimizer.minimize(cost)
return cost
def _actor_learn(self, obs):
action = self.model.policy(obs)
Q = self.model.value(obs, action)
cost = layers.reduce_mean(-1.0 * Q)
optimizer = fluid.optimizer.AdamOptimizer(self.actor_lr)
optimizer.minimize(cost, parameter_list=self.model.get_actor_params())
return cost
软更新:每次更新一点参数,用\tau控制,按比例更新
硬更新:是每隔一段时间全部参数都更新
def sync_target(self, decay=None, share_vars_parallel_executor=None):
""" self.target_model从self.model复制参数过来,若decay不为None,则是软更新
"""
if decay is None:
decay = 1.0 - self.tau
self.model.sync_weights_to(
self.target_model,
decay=decay,
share_vars_parallel_executor=share_vars_parallel_executor)
(3)Agent
Agent
负责算法与环境的交互,在交互过程中把生成的数据提供给Algorithm
来更新模型(Model
),数据的预处理流程也一般定义在这里。class Agent(parl.Agent):
def __init__(self, algorithm, obs_dim, act_dim):
assert isinstance(obs_dim, int)
assert isinstance(act_dim, int)
self.obs_dim = obs_dim
self.act_dim = act_dim
super(Agent, self).__init__(algorithm) # 注意:最开始先同步self.model和self.target_model的参数.
self.alg.sync_target(decay=0) def build_program(self):
self.pred_program = fluid.Program()
self.learn_program = fluid.Program() with fluid.program_guard(self.pred_program):
obs = layers.data(
name='obs', shape=[self.obs_dim], dtype='float32')
self.pred_act = self.alg.predict(obs) with fluid.program_guard(self.learn_program):
obs = layers.data(
name='obs', shape=[self.obs_dim], dtype='float32')
act = layers.data(
name='act', shape=[self.act_dim], dtype='float32')
reward = layers.data(name='reward', shape=[], dtype='float32')
next_obs = layers.data(
name='next_obs', shape=[self.obs_dim], dtype='float32')
terminal = layers.data(name='terminal', shape=[], dtype='bool')
_, self.critic_cost = self.alg.learn(obs, act, reward, next_obs,
terminal) def predict(self, obs):
obs = np.expand_dims(obs, axis=0)
act = self.fluid_executor.run(
self.pred_program, feed={'obs': obs},
fetch_list=[self.pred_act])[0]
act = np.squeeze(act)
return act def learn(self, obs, act, reward, next_obs, terminal):
feed = {
'obs': obs,
'act': act,
'reward': reward,
'next_obs': next_obs,
'terminal': terminal
}
critic_cost = self.fluid_executor.run(
self.learn_program, feed=feed, fetch_list=[self.critic_cost])[0]
self.alg.sync_target()
return critic_cost
(4)env.py
连续控制版本的CartPole环境
- 该环境代码与算法无关,可忽略不看,参考gym
(5)经验池 ReplayMemory
- 与
DQN
的replay_mamory.py
代码一致class ReplayMemory(object):
def __init__(self, max_size):
self.buffer = collections.deque(maxlen=max_size) def append(self, exp):
self.buffer.append(exp) def sample(self, batch_size):
mini_batch = random.sample(self.buffer, batch_size)
obs_batch, action_batch, reward_batch, next_obs_batch, done_batch = [], [], [], [], [] for experience in mini_batch:
s, a, r, s_p, done = experience
obs_batch.append(s)
action_batch.append(a)
reward_batch.append(r)
next_obs_batch.append(s_p)
done_batch.append(done) return np.array(obs_batch).astype('float32'), \
np.array(action_batch).astype('float32'), np.array(reward_batch).astype('float32'),\
np.array(next_obs_batch).astype('float32'), np.array(done_batch).astype('float32') def __len__(self):
return len(self.buffer)
(6)train
# 训练一个episode
def run_episode(agent, env, rpm):
obs = env.reset()
total_reward = 0
steps = 0
while True:
steps += 1
batch_obs = np.expand_dims(obs, axis=0)
action = agent.predict(batch_obs.astype('float32')) # 增加探索扰动, 输出限制在 [-1.0, 1.0] 范围内
action = np.clip(np.random.normal(action, NOISE), -1.0, 1.0) next_obs, reward, done, info = env.step(action) action = [action] # 方便存入replaymemory
rpm.append((obs, action, REWARD_SCALE * reward, next_obs, done)) if len(rpm) > MEMORY_WARMUP_SIZE and (steps % 5) == 0:
(batch_obs, batch_action, batch_reward, batch_next_obs,
batch_done) = rpm.sample(BATCH_SIZE)
agent.learn(batch_obs, batch_action, batch_reward, batch_next_obs,
batch_done) obs = next_obs
total_reward += reward if done or steps >= 200:
break
return total_reward增加扰动保持探索,添加一个高斯噪声。np.clip做一下裁剪,确保在合适的范围内。
总结
【八】强化学习之DDPG---PaddlePaddlle【PARL】框架{飞桨}的更多相关文章
- 强化学习(十八) 基于模拟的搜索与蒙特卡罗树搜索(MCTS)
在强化学习(十七) 基于模型的强化学习与Dyna算法框架中,我们讨论基于模型的强化学习方法的基本思路,以及集合基于模型与不基于模型的强化学习框架Dyna.本文我们讨论另一种非常流行的集合基于模型与不基 ...
- 深度强化学习——连续动作控制DDPG、NAF
一.存在的问题 DQN是一个面向离散控制的算法,即输出的动作是离散的.对应到Atari 游戏中,只需要几个离散的键盘或手柄按键进行控制. 然而在实际中,控制问题则是连续的,高维的,比如一个具有6个关节 ...
- 深度强化学习:Policy-Based methods、Actor-Critic以及DDPG
Policy-Based methods 在上篇文章中介绍的Deep Q-Learning算法属于基于价值(Value-Based)的方法,即估计最优的action-value function $q ...
- 强化学习(十七) 基于模型的强化学习与Dyna算法框架
在前面我们讨论了基于价值的强化学习(Value Based RL)和基于策略的强化学习模型(Policy Based RL),本篇我们讨论最后一种强化学习流派,基于模型的强化学习(Model Base ...
- 强化学习(十六) 深度确定性策略梯度(DDPG)
在强化学习(十五) A3C中,我们讨论了使用多线程的方法来解决Actor-Critic难收敛的问题,今天我们不使用多线程,而是使用和DDQN类似的方法:即经验回放和双网络的方法来改进Actor-Cri ...
- 【转载】 强化学习(八)价值函数的近似表示与Deep Q-Learning
原文地址: https://www.cnblogs.com/pinard/p/9714655.html ------------------------------------------------ ...
- 谷歌重磅开源强化学习框架Dopamine吊打OpenAI
谷歌重磅开源强化学习框架Dopamine吊打OpenAI 近日OpenAI在Dota 2上的表现,让强化学习又火了一把,但是 OpenAI 的强化学习训练环境 OpenAI Gym 却屡遭抱怨,比如不 ...
- NABCD框架(作业和事件的定期提醒)及第八周学习进度条
NABCD框架(作业和事件的定期提醒): N(need,需求): 你的创意解决了用户的什么需求? 我们的创意能够一定程度上督促我们的用户(学生)尽快完成自己近期的任务或者是作业.我们认为如果增设定时提 ...
- 谷歌推出新型强化学习框架Dopamine
今日,谷歌发布博客介绍其最新推出的强化学习新框架 Dopamine,该框架基于 TensorFlow,可提供灵活性.稳定性.复现性,以及快速的基准测试. GitHub repo:https://git ...
- 强化学习调参技巧二:DDPG、TD3、SAC算法为例:
1.训练环境如何正确编写 强化学习里的 env.reset() env.step() 就是训练环境.其编写流程如下: 1.1 初始阶段: 先写一个简化版的训练环境.把任务难度降到最低,确保一定能正常训 ...
随机推荐
- Nginx--用户认证&&访问控制&&限速&&状态访问
一 用户认证 某些网页只希望给特定的用户访问,可以设置用户认证,使用户访问时需要进行身份认证,只有认证通过才可访问网页 location / { root html; index index.html ...
- modint 板子
自动对 int 取模 // modint template<int MOD> struct Fp { ll val; constexpr Fp(ll v = 0) noexcept : v ...
- Python | 解放双手,用Python实现自动发送邮件
解放双手,用Python实现自动发送邮件 使用Python实现自动化邮件发送,可以让你摆脱繁琐的重复性业务,节省非常多的时间. Python有两个内置库:smtplib和email,能够实现邮件功能, ...
- Canal 组件简介与 vivo 帐号实践
互联网应用随着业务的发展,部分单表数据体量越来越大,应对服务性能与稳定的考虑,有做分库分表.数据迁移的需要,本文介绍了vivo帐号应对以上需求的实践. 一.前言 Canal 是阿里巴巴开源项目,关于什 ...
- OpenSCA受邀出席2023 Open Compliance Summit
近日,由Linux基金会主办的2023 Open Compliance Summit(开放合规峰会,简称OCS)在日本东京隆重召开.悬镜安全旗下全球极客开源数字供应链安全社区OpenSCA受邀参与,O ...
- 入门篇-其之十一-流程控制之break和continue关键字
本文中使用到的工具是Intellij IDEA和JDK 8,需要安装两款工具的请查看这两篇教程:点我查看安装JDK8/11/17教程.点我查看安装Intellij IDEA教程. 一.循环的嵌套 和前 ...
- 通过部署流行 Web 框架掌握 Serverless 技术
大家好,我是霍大侠,本篇我们通过学习部署流行 Web 框架,如 Spring Boot,Express,Web IDE,让你掌握 Serverless 函数计算架构和技术,领略弹性并发.高可用的好处. ...
- 【真送礼物】1 分钟 Serverless 极速部署盲盒平台,自己部署自己抽!
当前,Serverless 在移动应用.游戏等场景已经实现规模化应用,Serverless 技术可以更好的帮助开发者只关注应用创新,减少对开发与运维的过度关注. 为了让更多开发者在真实场景中体验 Se ...
- 13、SpringBoot-配置文件里密码加密
系列导航 springBoot项目打jar包 1.springboot工程新建(单模块) 2.springboot创建多模块工程 3.springboot连接数据库 4.SpringBoot连接数据库 ...
- S3C2440移植uboot之支持DM9000
上一节S3C2440移植uboot之支持NANDFLASH操作移植了uboot 支持了NANDFLASH的操作,这一节修改uboot支持DM9000. 目录 通过Makefile把dm9000x编 ...