bzoj 1537: [POI2005]Aut- The Bus 线段树
bzoj 1537: [POI2005]Aut- The Bus
先把坐标离散化
设f[i][j]表示从(1,1)走到(i,j)的最优解
这样直接dp::: f[i][j] = max{f[i-1][j] + f[i][j-1]} + w[i][j]就可以完美的MLE + TLE了
我们发现f[i][j]中,只有有权的点才有意义,但是我们只有10^5个有用的点,却考虑了10^5 * 10^5个点
所以我们只考虑有权的点,那么可以发现,
f[i][j]的更新一定是由f(1,1)~(i,j)的最大值更新过来的
所以可以用二维树状数组线段树来维护这个东西
我们按照x坐标排序,再按y排序,这样我们发现上一步计算出来的答案才有可能更新下一个计算出来的y值大于这个值的答案
我们可以使用线段树来维护这个东西
:这里使用的是zkw线段树,也就是非递归版线段树
详见《统计的力量》
#include <queue>
#include <cstdio>
#include <cstring>
#include <climits>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(ll &x){
x=;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=*x+ch-'',ch=getchar(),ch>'!');if(flag) x=-x;
}
inline ll cat_min(const ll &a,const ll &b){return a<b ? a:b;}
inline ll cat_max(const ll &a,const ll &b){return a>b ? a:b;}
inline ll cat_abs(const ll &x){return x < ? -x : x;}
const ll maxn = ;
struct Node{
ll x,y,v;
bool friend operator < (const Node &a,const Node &b){
return a.x == b.x ? a.y < b.y : a.x < b.x;
}
}G[maxn];
ll T[maxn<<],M;
inline void build(ll n){for(M=;M<(n+);M<<=);}
inline void change(ll x,ll val){
if(T[x+=M] >= val) return;
for(T[x]=val,x>>=;x;x>>=)
T[x] = cat_max(T[x<<],T[x<<|]);
}
inline ll query(ll s,ll t){
ll ret = ;
for(s+=M-,t+=M+;s^t^;s>>=,t>>=){
if(~s&) ret = cat_max(ret,T[s^]);
if( t&) ret = cat_max(ret,T[t^]);
}return ret;
}
ll f[maxn];
inline bool cmp(const Node &a,const Node &b){
if(a.y == b.y) return a.x < b.x;
return a.y < b.y;
}
int main(){ ll n,m,k;read(n);read(m);read(k);
for(ll i=;i<=k;++i){
read(G[i].x);read(G[i].y);read(G[i].v);
}
sort(G+,G+k+,cmp);
for(ll i=,n_h = ;i<=k;++i) G[i].y = ++n_h;
build(k);
sort(G+,G+k+);
ll ans = ;
for(ll i=;i<=k;++i){
f[i] = query(,G[i].y) + G[i].v;
change(G[i].y,f[i]);
ans = cat_max(ans,f[i]);
}printf("%lld\n",ans); return ;
}
bzoj 1537: [POI2005]Aut- The Bus 线段树的更多相关文章
- BZOJ 1537: [POI2005]Aut- The Bus(dp + BIT)
对y坐标离散化, 然后按x坐标排序, dp. 一个点(x, y), 设到达这个点接到的最多乘客数为t, 那么t可以用来更新y'>=y的所有点.用树状数组维护最大值. -------------- ...
- Bzoj 1537: [POI2005]Aut- The Bus 题解 [由暴力到正解]
1537: [POI2005]Aut- The Bus Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 387 Solved: 264[Submit][S ...
- 【刷题】BZOJ 1537 [POI2005]Aut- The Bus
Description Byte City 的街道形成了一个标准的棋盘网络 – 他们要么是北南走向要么就是西东走向. 北南走向的路口从 1 到 n编号, 西东走向的路从1 到 m编号. 每个路口用两个 ...
- [BZOJ 2212] [Poi2011] Tree Rotations 【线段树合并】
题目链接:BZOJ - 2212 题目分析 子树 x 内的逆序对个数为 :x 左子树内的逆序对个数 + x 右子树内的逆序对个数 + 跨越 x 左子树与右子树的逆序对. 左右子树内部的逆序对与是否交换 ...
- [BZOJ 3995] [SDOI2015] 道路修建 【线段树维护连通性】
题目链接:BZOJ - 3995 题目分析 这道题..是我悲伤的回忆.. 线段树维护连通性,与 BZOJ-1018 类似,然而我省选之前并没有做过 1018,即使它在 ProblemSet 的第一页 ...
- [BZOJ 3888] [Usaco2015 Jan] Stampede 【线段树】
题目链接:BZOJ - 3888 题目分析 首先,计算出每个线段在 x 坐标 0 处出现的时间开始点和结束点,就转成了时间轴上的线段. 然后就是看每条线段是否被 y 比它小的线段完全覆盖了.注意求出的 ...
- [BZOJ 3747] [POI 2015] Kinoman【线段树】
Problem Link : BZOJ 3747 题解:ZYF-ZYF 神犇的题解 解题的大致思路是,当区间的右端点向右移动一格时,只有两个区间的左端点对应的答案发生了变化. 从 f[i] + 1 到 ...
- BZOJ 1593: [Usaco2008 Feb]Hotel 旅馆 [线段树]
传送门 题意: 操作1:找长为$len$的空区间并填满,没有输出$0$ 操作2:将$[l,r]$之间的区间置空 我真是太弱了这种线段树还写了一个半小时,中间为了查错手动模拟了$30min$线段树操作, ...
- BZOJ.4137.[FJOI2015]火星商店问题(线段树分治 可持久化Trie)
BZOJ 洛谷 一直觉得自己非常zz呢.现在看来是真的=-= 注意题意描述有点问题,可以看BZOJ/洛谷讨论. 每个询问有两个限制区间,一是时间限制\([t-d+1,t]\),二是物品限制\([L,R ...
随机推荐
- 小白挑战:AsyncTask源码分析
//AsyncTask从本质上讲,是对ThreadPool和handler的封装. 在学习线程池相关的知识时,看到书中提到AsyncTask的实现中使用到了ThreadPool,于是把源码翻了出来, ...
- php设计模式 装饰器模式
装饰器模式,可以动态地添加修改类的功能. 一个类提供了一项功能,如果要修改并添加额外的功能,传统的编程模式需要写一个子类继承它,并重新实现类的方法.使用装饰器模式,仅需要在运行时添加一个装饰器对象即可 ...
- Could not obtain information about Windows NT group/user 'xxxx\xxxx', error code 0x5
案例描述 昨晚踢球回来,接到电话说一个系统的几个比较重要作业出错,导致系统数据有些问题.让我赶紧检查看看.检查作业日志时发现,作业报如下错误(关键信息用xxx替换) The job failed. ...
- C、C++: 引用、指针、实例、内存模型、namespace
// HelloWorld.cpp : Defines the entry point for the console application. // #include "stdafx.h& ...
- javascript-桥接模式
桥接模式 1.在系统沿着多个维度变化的同时,又不增加其复杂度并以达到解耦 2.最主要特点:将实现层(如元素绑定的事件)与抽象层(如修饰页面UI逻辑)解耦分离,使两部分独立变化 3.避免需求的改变造成对 ...
- 《java JDK7 学习笔记》之继承与多态
1.面向对象中,子类继承父类,避免重复的行为定义,不过并非为了避免重复定义行为就使用继承.应该正确判断使用继承的时机及继承之后灵活的运用多态,才是学习继承时的重点. 2.程序代码重复在程序设计上,就是 ...
- W3School-CSS 外边距 (margin) 实例
CSS 外边距 (margin) 实例 CSS 实例 CSS 背景实例 CSS 文本实例 CSS 字体(font)实例 CSS 边框(border)实例 CSS 外边距 (margin) 实例 CSS ...
- 启动mysql时显示:/tmp/mysql.sock 不存在的解决方法
启动mysql时显示:/tmp/mysql.sock 不存在的解决方法 启动mysql时报错的解决(mysql 5.0.45 redhat as 43) ====================== ...
- Asp.Net MVC+BootStrap+EF6.0实现简单的用户角色权限管理8
接下来做的是对页面的增删改查与页面与页面按钮之间的联系.先上代码和页面效果 using AuthorDesign.Web.App_Start.Common; using System; using S ...
- ios合并静态库
lipo -create SQY/iOS/iphoneos/libGamePlusAPI.a SQY/iOS/iphonesimulator/libGamePlusAPI.a -output SQY/ ...