bzoj 1537: [POI2005]Aut- The Bus

先把坐标离散化

设f[i][j]表示从(1,1)走到(i,j)的最优解

这样直接dp::: f[i][j] = max{f[i-1][j] + f[i][j-1]} + w[i][j]就可以完美的MLE + TLE了

我们发现f[i][j]中,只有有权的点才有意义,但是我们只有10^5个有用的点,却考虑了10^5 * 10^5个点

所以我们只考虑有权的点,那么可以发现,

f[i][j]的更新一定是由f(1,1)~(i,j)的最大值更新过来的

所以可以用二维树状数组线段树来维护这个东西

我们按照x坐标排序,再按y排序,这样我们发现上一步计算出来的答案才有可能更新下一个计算出来的y值大于这个值的答案

我们可以使用线段树来维护这个东西

:这里使用的是zkw线段树,也就是非递归版线段树

详见《统计的力量》

 #include <queue>
#include <cstdio>
#include <cstring>
#include <climits>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(ll &x){
x=;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=*x+ch-'',ch=getchar(),ch>'!');if(flag) x=-x;
}
inline ll cat_min(const ll &a,const ll &b){return a<b ? a:b;}
inline ll cat_max(const ll &a,const ll &b){return a>b ? a:b;}
inline ll cat_abs(const ll &x){return x < ? -x : x;}
const ll maxn = ;
struct Node{
ll x,y,v;
bool friend operator < (const Node &a,const Node &b){
return a.x == b.x ? a.y < b.y : a.x < b.x;
}
}G[maxn];
ll T[maxn<<],M;
inline void build(ll n){for(M=;M<(n+);M<<=);}
inline void change(ll x,ll val){
if(T[x+=M] >= val) return;
for(T[x]=val,x>>=;x;x>>=)
T[x] = cat_max(T[x<<],T[x<<|]);
}
inline ll query(ll s,ll t){
ll ret = ;
for(s+=M-,t+=M+;s^t^;s>>=,t>>=){
if(~s&) ret = cat_max(ret,T[s^]);
if( t&) ret = cat_max(ret,T[t^]);
}return ret;
}
ll f[maxn];
inline bool cmp(const Node &a,const Node &b){
if(a.y == b.y) return a.x < b.x;
return a.y < b.y;
}
int main(){ ll n,m,k;read(n);read(m);read(k);
for(ll i=;i<=k;++i){
read(G[i].x);read(G[i].y);read(G[i].v);
}
sort(G+,G+k+,cmp);
for(ll i=,n_h = ;i<=k;++i) G[i].y = ++n_h;
build(k);
sort(G+,G+k+);
ll ans = ;
for(ll i=;i<=k;++i){
f[i] = query(,G[i].y) + G[i].v;
change(G[i].y,f[i]);
ans = cat_max(ans,f[i]);
}printf("%lld\n",ans); return ;
}

bzoj 1537: [POI2005]Aut- The Bus 线段树的更多相关文章

  1. BZOJ 1537: [POI2005]Aut- The Bus(dp + BIT)

    对y坐标离散化, 然后按x坐标排序, dp. 一个点(x, y), 设到达这个点接到的最多乘客数为t, 那么t可以用来更新y'>=y的所有点.用树状数组维护最大值. -------------- ...

  2. Bzoj 1537: [POI2005]Aut- The Bus 题解 [由暴力到正解]

    1537: [POI2005]Aut- The Bus Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 387  Solved: 264[Submit][S ...

  3. 【刷题】BZOJ 1537 [POI2005]Aut- The Bus

    Description Byte City 的街道形成了一个标准的棋盘网络 – 他们要么是北南走向要么就是西东走向. 北南走向的路口从 1 到 n编号, 西东走向的路从1 到 m编号. 每个路口用两个 ...

  4. [BZOJ 2212] [Poi2011] Tree Rotations 【线段树合并】

    题目链接:BZOJ - 2212 题目分析 子树 x 内的逆序对个数为 :x 左子树内的逆序对个数 + x 右子树内的逆序对个数 + 跨越 x 左子树与右子树的逆序对. 左右子树内部的逆序对与是否交换 ...

  5. [BZOJ 3995] [SDOI2015] 道路修建 【线段树维护连通性】

    题目链接:BZOJ - 3995 题目分析 这道题..是我悲伤的回忆.. 线段树维护连通性,与 BZOJ-1018 类似,然而我省选之前并没有做过  1018,即使它在 ProblemSet 的第一页 ...

  6. [BZOJ 3888] [Usaco2015 Jan] Stampede 【线段树】

    题目链接:BZOJ - 3888 题目分析 首先,计算出每个线段在 x 坐标 0 处出现的时间开始点和结束点,就转成了时间轴上的线段. 然后就是看每条线段是否被 y 比它小的线段完全覆盖了.注意求出的 ...

  7. [BZOJ 3747] [POI 2015] Kinoman【线段树】

    Problem Link : BZOJ 3747 题解:ZYF-ZYF 神犇的题解 解题的大致思路是,当区间的右端点向右移动一格时,只有两个区间的左端点对应的答案发生了变化. 从 f[i] + 1 到 ...

  8. BZOJ 1593: [Usaco2008 Feb]Hotel 旅馆 [线段树]

    传送门 题意: 操作1:找长为$len$的空区间并填满,没有输出$0$ 操作2:将$[l,r]$之间的区间置空 我真是太弱了这种线段树还写了一个半小时,中间为了查错手动模拟了$30min$线段树操作, ...

  9. BZOJ.4137.[FJOI2015]火星商店问题(线段树分治 可持久化Trie)

    BZOJ 洛谷 一直觉得自己非常zz呢.现在看来是真的=-= 注意题意描述有点问题,可以看BZOJ/洛谷讨论. 每个询问有两个限制区间,一是时间限制\([t-d+1,t]\),二是物品限制\([L,R ...

随机推荐

  1. FMDB基本使用

    1.打开数据库 #import "ViewController.h" #import "FMDB.h" @interface ViewController () ...

  2. C语言的泛型编程

    1 问题引入 首先引入一个问题,实现一个泛型的swap函数,分别使用C++和C实现. 2 C++的泛型 C++有良好的泛型编程机制,所以我很快就写出了C++版的泛型swap函数. template&l ...

  3. 使用Project进行项目管理 - 项目管理系列文章

    前面当项目经理的时候曾经用到过Project来进行项目管理.这些天闲着无事,将代码翻出来留念了一下,现在将Project项目管理的东西也翻出来玩玩. 微软的Project是一款不错的软件,经过微软这么 ...

  4. sql增删改查-转载

    一.增:有2种方法 1.使用insert插入单行数据: 语法:insert [into] <表名> [列名] values <列值> 例:insert into Strdent ...

  5. Linked Server: EXECUTE permission denied on object 'xp_prop_oledb_provider', database 'master', owner 'dbo'

    问题出现环境: 使用SQL Server Management Studio 2008 连接到SQL Server 2000的数据库,点击其中一个Oracle链接服务器,单击"目录" ...

  6. PostgreSQL-数据目录与pg_ctl

    # tail /etc/profile PATH="$PATH":/usr/lib/postgresql/9.2/bin/ export PATH export PGDATA=/v ...

  7. android 发送短信功能

    private void sendSMS(String num,String smsBody) { String phoneNum = "smsto:" + num; Uri sm ...

  8. 四极耳机接线标准,N版耳机改造为i版耳机

    (本文提到的都是3.5mm的耳机,2.5mm的没做验证) 现在的手机,以及大多数笔记本都开始使用“四极耳机”,也就是耳机上插头上有四个极.为了叙述方便,将耳机插头上的四个极从插头顶端到靠近电线的塑胶部 ...

  9. [转]django自定义表单提交

    原文网址:http://www.cnblogs.com/retop/p/4677148.html 注:本人使用的Django1.8.3版本进行测试 除了使用Django内置表单,有时往往我们需要自定义 ...

  10. J2EE基础之JSP

    J2EE基础之JSP 1.JSP简介 JSP是JavaServer的缩写,是由Sun Microsystems公司倡导.许多公司参与一起建立的一种动态网页技术标准.在HTML文件中加入Java程序代码 ...