【转载】 梯度的直观理解_谈谈优化算法之一(动量法、Nesterov法、自然梯度法)
原文地址:
https://blog.csdn.net/weixin_34613462/article/details/112333623
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_34613462/article/details/112333623
————————————————
========================================

-------------------------------------------------------------------
是时候谈谈优化算法了。不管是求解优化目标还是为了调参,只要问题从理论层面上升到实际操作层面,就离不开优化算法。本节讲主要围绕梯度下降(Gradient Descent)算法展开。
动量法(Momentum)


陷入局部最优或在平原部分缓步前行




牛顿动量(Nesterov)算法




自然梯度法(Natural Gradient Descent)
当优化问题的两个坐标轴尺度差异较大时,动量法在更新过程中会出现震荡问题,Nesterov算法给出了初步解决,但这两种方法有一个共性,就是都是从参数的角度去优化模型的,那有没有可能从模型本身角度来考虑呢?——这就是自然梯度法。在强化学习的Natural Actor-Critic算法和TRPO算法中,自然梯度法是强有力的优化工具。


========================================
【转载】 梯度的直观理解_谈谈优化算法之一(动量法、Nesterov法、自然梯度法)的更多相关文章
- 改善深层神经网络_优化算法_mini-batch梯度下降、指数加权平均、动量梯度下降、RMSprop、Adam优化、学习率衰减
1.mini-batch梯度下降 在前面学习向量化时,知道了可以将训练样本横向堆叠,形成一个输入矩阵和对应的输出矩阵: 当数据量不是太大时,这样做当然会充分利用向量化的优点,一次训练中就可以将所有训练 ...
- zz:一个框架看懂优化算法之异同 SGD/AdaGrad/Adam
首先定义:待优化参数: ,目标函数: ,初始学习率 . 而后,开始进行迭代优化.在每个epoch : 计算目标函数关于当前参数的梯度: 根据历史梯度计算一阶动量和二阶动量:, 计算当前时刻的下降 ...
- 吴恩达机器学习笔记6-梯度下降II(Gradient descent intuition)--梯度下降的直观理解
在之前的学习中,我们给出了一个数学上关于梯度下降的定义,本次视频我们更深入研究一下,更直观地感受一下这个算法是做什么的,以及梯度下降算法的更新过程有什么意义.梯度下降算法如下: 描述:对
- 梯度优化算法总结以及solver及train.prototxt中相关参数解释
参考链接:http://sebastianruder.com/optimizing-gradient-descent/ 如果熟悉英文的话,强烈推荐阅读原文,毕竟翻译过程中因为个人理解有限,可能会有谬误 ...
- 机器学习中正则化项L1和L2的直观理解
正则化(Regularization) 概念 L0正则化的值是模型参数中非零参数的个数. L1正则化表示各个参数绝对值之和. L2正则化标识各个参数的平方的和的开方值. L0正则化 稀疏的参数可以防止 ...
- 深度学习必备:随机梯度下降(SGD)优化算法及可视化
补充在前:实际上在我使用LSTM为流量基线建模时候,发现有效的激活函数是elu.relu.linear.prelu.leaky_relu.softplus,对应的梯度算法是adam.mom.rmspr ...
- [DeeplearningAI笔记]改善深层神经网络_优化算法2.6_2.9Momentum/RMSprop/Adam优化算法
Optimization Algorithms优化算法 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.6 动量梯度下降法(Momentum) 另一种成本函数优化算法,优化速度一般快于标准 ...
- [DeeplearningAI笔记]改善深层神经网络_优化算法2.3_2.5_带修正偏差的指数加权平均
Optimization Algorithms优化算法 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.3 指数加权平均 举个例子,对于图中英国的温度数据计算移动平均值或者说是移动平均值( ...
- 多目标优化算法(一)NSGA-Ⅱ(NSGA2)(转载)
多目标优化算法(一)NSGA-Ⅱ(NSGA2) 本文链接:https://blog.csdn.net/qq_40434430/article/details/82876572多目标优化算法(一)NSG ...
- 梯度优化算法Adam
最近读一个代码发现用了一个梯度更新方法, 刚开始还以为是什么奇奇怪怪的梯度下降法, 最后分析一下是用一阶梯度及其二次幂做的梯度更新.网上搜了一下, 果然就是称为Adam的梯度更新算法, 全称是:自适应 ...
随机推荐
- work07
day08作业: 必做题:============================================================ 第一题: 定义一个字符串s = "Hell ...
- window.onload()函数和jQuery中的document.ready()有什么区别?
a.执行时间:window.onload必须等到页面内包括图片的所有元素加载完毕后才能执行.$(document).ready()是DOM结构绘制 完毕后就执行,不必等到加载完毕.$(doc ...
- Mysql中innodb的B+tree能存储多少数据?
引言 InnoDB一棵3层B+树可以存放多少行数据?这个问题的简单回答是:约2千万.为什么是这么多呢?因为这是可以算出来的,要搞清楚这个问题,我们先从InnoDB索引数据结构.数据组织方式说起. 在计 ...
- Spring之WebMvcConfigurationSupport
WebMvcConfigurationSupport是mvc的核心配置.开发spring,了解和掌握这个是必须的. 为了简约篇幅,本文把"WebMvcConfigurationSupport ...
- uniapp+thinkphp5实现微信支付(JSAPI支付)
前言 统一支付是JSAPI/NATIVE/APP各种支付场景下生成支付订单,返回预支付订单号的接口,目前微信支付所有场景均使用这一接口.下面介绍的是其中JSAPI的支付实现流程与uniapp唤起微信支 ...
- 虽然说自己是个废物,但年纪轻轻就有了120w
- Java反射与Fastjson的危险反序列化
Preface 在前文中,我们介绍了 Java 的基础语法和特性和 fastjson 的基础用法,本文我们将深入学习fastjson的危险反序列化以及预期相关的 Java 概念. 什么是Java反射? ...
- WEB前端项目开发流程
项目需求分析 这个环节是由项目经理完成,项目经理首先和客户进行交流,了解客户的需求,然后分析项目的可行性,如果项目可以被实现,项目经理写出项目需求文档交给设计师完成后续的开发. 页面设计 这个环节主要 ...
- AOP模板
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...
- 【VMware vCenter】VMware vCenter Server(VCSA) 5.5 版本证书过期问题处理过程。
之前帮客户处理了一个因证书过期导致 vCenter Server 无法登录的问题,在此记录一下,因为时间过去有点久了,可能会有些地方描述的不是很清楚,所以就当作参考就行.客户环境是一个非常老的 vCe ...