原文地址:

https://blog.csdn.net/weixin_34613462/article/details/112333623

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_34613462/article/details/112333623
————————————————

========================================

-------------------------------------------------------------------

是时候谈谈优化算法了。不管是求解优化目标还是为了调参,只要问题从理论层面上升到实际操作层面,就离不开优化算法。本节讲主要围绕梯度下降(Gradient Descent)算法展开。

动量法(Momentum)

陷入局部最优或在平原部分缓步前行

牛顿动量(Nesterov)算法

自然梯度法(Natural Gradient Descent)

当优化问题的两个坐标轴尺度差异较大时,动量法在更新过程中会出现震荡问题,Nesterov算法给出了初步解决,但这两种方法有一个共性,就是都是从参数的角度去优化模型的,那有没有可能从模型本身角度来考虑呢?——这就是自然梯度法。在强化学习的Natural Actor-Critic算法和TRPO算法中,自然梯度法是强有力的优化工具。

========================================

【转载】 梯度的直观理解_谈谈优化算法之一(动量法、Nesterov法、自然梯度法)的更多相关文章

  1. 改善深层神经网络_优化算法_mini-batch梯度下降、指数加权平均、动量梯度下降、RMSprop、Adam优化、学习率衰减

    1.mini-batch梯度下降 在前面学习向量化时,知道了可以将训练样本横向堆叠,形成一个输入矩阵和对应的输出矩阵: 当数据量不是太大时,这样做当然会充分利用向量化的优点,一次训练中就可以将所有训练 ...

  2. zz:一个框架看懂优化算法之异同 SGD/AdaGrad/Adam

    首先定义:待优化参数:  ,目标函数: ,初始学习率 . 而后,开始进行迭代优化.在每个epoch  : 计算目标函数关于当前参数的梯度:  根据历史梯度计算一阶动量和二阶动量:, 计算当前时刻的下降 ...

  3. 吴恩达机器学习笔记6-梯度下降II(Gradient descent intuition)--梯度下降的直观理解

    在之前的学习中,我们给出了一个数学上关于梯度下降的定义,本次视频我们更深入研究一下,更直观地感受一下这个算法是做什么的,以及梯度下降算法的更新过程有什么意义.梯度下降算法如下: 描述:对

  4. 梯度优化算法总结以及solver及train.prototxt中相关参数解释

    参考链接:http://sebastianruder.com/optimizing-gradient-descent/ 如果熟悉英文的话,强烈推荐阅读原文,毕竟翻译过程中因为个人理解有限,可能会有谬误 ...

  5. 机器学习中正则化项L1和L2的直观理解

    正则化(Regularization) 概念 L0正则化的值是模型参数中非零参数的个数. L1正则化表示各个参数绝对值之和. L2正则化标识各个参数的平方的和的开方值. L0正则化 稀疏的参数可以防止 ...

  6. 深度学习必备:随机梯度下降(SGD)优化算法及可视化

    补充在前:实际上在我使用LSTM为流量基线建模时候,发现有效的激活函数是elu.relu.linear.prelu.leaky_relu.softplus,对应的梯度算法是adam.mom.rmspr ...

  7. [DeeplearningAI笔记]改善深层神经网络_优化算法2.6_2.9Momentum/RMSprop/Adam优化算法

    Optimization Algorithms优化算法 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.6 动量梯度下降法(Momentum) 另一种成本函数优化算法,优化速度一般快于标准 ...

  8. [DeeplearningAI笔记]改善深层神经网络_优化算法2.3_2.5_带修正偏差的指数加权平均

    Optimization Algorithms优化算法 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.3 指数加权平均 举个例子,对于图中英国的温度数据计算移动平均值或者说是移动平均值( ...

  9. 多目标优化算法(一)NSGA-Ⅱ(NSGA2)(转载)

    多目标优化算法(一)NSGA-Ⅱ(NSGA2) 本文链接:https://blog.csdn.net/qq_40434430/article/details/82876572多目标优化算法(一)NSG ...

  10. 梯度优化算法Adam

    最近读一个代码发现用了一个梯度更新方法, 刚开始还以为是什么奇奇怪怪的梯度下降法, 最后分析一下是用一阶梯度及其二次幂做的梯度更新.网上搜了一下, 果然就是称为Adam的梯度更新算法, 全称是:自适应 ...

随机推荐

  1. 开启安全功能 ES 集群就安全了吗?

    背景 经常跟 ES 打交道的朋友都知道,现在主流的 ES 集群安全方案是:RBAC + TLS for Internal + HTTPS . 作为终端用户一般只需要关心用户名和密码就行了.作为管理和运 ...

  2. for while 要求选慢速的,但是for不卡,while 跟 递归 这两个容易卡

    for比while慢,但是for不卡,while跟递归容易卡 int index = 0; bool jump=flase: for( index;index==0;;)/*这个空分号算一个语句*/ ...

  3. 根据两个日期之间获取LocalDate日历列表和LocalDate和LocalDateTime数据格式转换

    根据两个日期之间获取LocalDate日历列表和LocalDate和LocalDateTime数据格式转换 package com.example.core.mydemo.localdatetime; ...

  4. mysql分组求最大ID记录行方法

    ##创建表 CREATE TABLE `test_user` ( `id` INT(11) NOT NULL AUTO_INCREMENT, `order_no` BIGINT(20) DEFAULT ...

  5. ThreadLocal本地局部线程demo

    ThreadLocal本地局部线程demo import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.util.Hash ...

  6. C# .net core中如何将多张png图片合并成一个gif

    背景 我们有很多这样的序列帧: 我这边要把这些序列帧裁切最后合并成gif,以下是我裁切后的png文件: 我一开始选用的是 SixLabors.ImageSharp 这是裁切代码: using var ...

  7. 一款开源、免费、现代化风格的WPF UI控件库 - ModernWpf

    前言 今天大姚给大家分享一款开源(MIT License).免费.现代化风格的WPF UI控件库:ModernWpf. 项目介绍 ModernWpf是一个开源项目,它为 WPF 提供了一组现代化的控件 ...

  8. 算法金 | 没有思考过 Embedding,不足以谈 AI

    大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」 抱个拳,送个礼 在当今的人工智能(AI)领域,Embedding 是一个不可或缺的概念 ...

  9. 嵌入式编程的 4 种模型:轮询、中断、DMA、通道

    轮询方式 对I/O设备的程序轮询的方式,是早期的计算机系统对I/O设备的一种管理方式.它定时对各种设备轮流询问一遍有无处理要求.轮流询问之后,有要求的,则加以处理.在处理I/O设备的要求之后,处理机返 ...

  10. FFmpeg开发笔记(三十三)分析ZLMediaKit对H.264流的插帧操作

    ​<FFmpeg开发实战:从零基础到短视频上线>一书的"3.4.3  把原始的H264文件封装为MP4格式"介绍了如何把H.264裸流封装为MP4文件.那么在网络上传输 ...