COGS746. [网络流24题] 骑士共存
骑士共存问题
«问题描述:
在一个n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示。棋盘
上某些方格设置了障碍,骑士不得进入。
«编程任务:
对于给定的n*n个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置多少个骑
士,使得它们彼此互不攻击。
«数据输入:
由文件knight.in给出输入数据。第一行有2 个正整数n 和m (1<=n<=200, 0<=m<=n*n)<n2),< span="">
分别表示棋盘的大小和障碍数。接下来的m 行给出障碍的位置。每行2 个正整数,表示障
碍的方格坐标。
«结果输出:
将计算出的共存骑士数输出到文件knight.out。
输入文件示例 输出文件示例
knight.in
3 2
1 1
3 3
knight.out
5
二分图最大独立集,转化为二分图最大匹配,从而用最大流解决。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<vector>
using namespace std;
const int mx[]={,,,-,-,,,-,-};
const int my[]={,,-,,-,,-,,-};
const int mxn=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*-''+ch;ch=getchar();}
return x*f;
}
struct edge{int v,nxt,f;}e[mxn<<];
int hd[mxn],mct=;
void add_edge(int u,int v,int f){
e[++mct].v=v;e[mct].f=f;e[mct].nxt=hd[u];hd[u]=mct;return;
}
int n,m;
int S,T;
int d[mxn];
int id[][];
int mp[][];
bool BFS(int s,int t){
queue<int>q;
memset(d,,sizeof d);
d[s]=;
q.push(s);
while(!q.empty()){
int u=q.front();q.pop();
for(int i=hd[u];i;i=e[i].nxt){
int v=e[i].v;
if(!d[v] && e[i].f){
d[v]=d[u]+;
q.push(v);
}
}
}
return d[t];
}
int DFS(int u,int lim){
if(u==T)return lim;
int tmp,f=;
for(int i=hd[u];i;i=e[i].nxt){
int v=e[i].v;
if(d[v]==d[u]+ && e[i].f){
tmp=DFS(v,min(lim,e[i].f));
e[i].f-=tmp;
e[i^].f+=tmp;
lim-=tmp;
f+=tmp;
if(!lim)return f;
}
}
d[u]=;
return f;
}
inline int Dinic(){
int res=;
while(BFS(S,T))res+=DFS(S,1e9);
return res;
}
void solve(){
int i,j;
for(i=;i<=n;i++)
for(j=;j<=n;j++)
id[i][j]=(i-)*n+j;
for(i=;i<=n;i++)
for(j=;j<=n;j++){
if(mp[i][j])continue;
if((i+j)%==)//白色
{
add_edge(S,id[i][j],);
add_edge(id[i][j],S,);
for(int k=;k<=;k++){
int nx=i+mx[k],ny=j+my[k];
if(nx< || nx>n || ny< || ny>n || mp[nx][ny])continue;
add_edge(id[i][j],id[nx][ny],);
add_edge(id[nx][ny],id[i][j],);
}
}
else{//黑色
add_edge(id[i][j],T,);
add_edge(T,id[i][j],);
}
}
return;
}
int main()
{
freopen("knight.in","r",stdin);
freopen("knight.out","w",stdout);
n=read();m=read();
int i,j,u,v;
for(i=;i<=m;i++){
u=read();v=read();
mp[u][v]=;//标记障碍
}
S=;T=n*n+;
solve(); int ans=Dinic();
ans=n*n-m-ans;
printf("%d\n",ans);
return ;
}
COGS746. [网络流24题] 骑士共存的更多相关文章
- AC日记——[网络流24题]骑士共存 cogs 746
746. [网络流24题] 骑士共存 ★★☆ 输入文件:knight.in 输出文件:knight.out 简单对比时间限制:1 s 内存限制:128 MB 骑士共存问题 «问题描述: ...
- Cogs 746. [网络流24题] 骑士共存(最大独立集)
[网络流24题] 骑士共存 ★★☆ 输入文件:knight.in 输出文件:knight.out 简单对比 时间限制:1 s 内存限制:128 MB 骑士共存问题 «问题描述: 在一个n*n个方格的国 ...
- [网络流24题] 骑士共存(cogs 746)
骑士共存问题«问题描述:在一个n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘 上某些方格设置了障碍,骑士不得进入. «编程任务:对于给定的n*n个方格的国际象棋棋盘和障碍标志 ...
- 网络流24题 骑士共存(DCOJ8023)
题目描述 在一个 n*n 个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入. 对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以 ...
- 网络流24题——骑士共存问题 luogu 3355
题目描述:这里 从这里开始,我们涉及到了一个新的问题:最小割问题 首先给出一些定义(本人根据定义自己口胡的): 一个流网络中的一个割是一个边集,使得割掉这些边集后源点与汇点不连通 而最小割问题就是一个 ...
- loj #6226. 「网络流 24 题」骑士共存问题
#6226. 「网络流 24 题」骑士共存问题 题目描述 在一个 n×n\text{n} \times \text{n}n×n 个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上 ...
- 【线性规划与网络流 24题】已完成(3道题因为某些奇怪的原因被抛弃了QAQ)
写在前面:SDOI2016 Round1滚粗后蒟蒻开始做网络流来自我拯救(2016-04-11再过几天就要考先修课,现在做网络流24题貌似没什么用←退役节奏) 做的题目将附上日期,见证我龟速刷题. 1 ...
- 【算法】【网络流24题】巨坑待填(成功TJ,有时间再填)
------------------------------------------------------------------------------------ 17/24 --------- ...
- 网络流基础&网络流24题
网络最大流 dinic+当前弧优化. const int N=10007,M=100007,inf=1e9; int s,t,head[N],ver[M],edge[M],Next[M],tot=1, ...
随机推荐
- 活用UML-软件设计高手(广州 2014年6月14-15日)
我们将在广州为您奉献高级技术课程”活用UML-软件设计高手“,首席专家张老师将会为您分享软件架构设计.数据库设计.用户体验设计及详细设计的最佳实践,帮助您成为优秀的软件设计师! 时间:2014.06. ...
- 转载文章-----Rational Rose2007(v7.0)下载地址、安装及激活详解教程(图)
转载地址:http://www.cnblogs.com/leaven/p/3718361.html 最近需要画uml图,之前用的是Rose 2003版的,由于好久没进去了,结果发现原来的激活又失效了, ...
- SQL*Plus环境变量设置浅析
SQL*Plus的使用环境是可以通过login.sql 或 glogin.sql脚本来设置的,可能很多初学者或不习惯使用SQL*Plus的老鸟都不知道.因为在如今UI工具(Toad.PL/SQL De ...
- Linux 使用fdisk添加新分区
Linux系统由于数据累计增长.前期存储规划不合理等诸多因素,出现存储不够用的情况时,此时就需要扩展逻辑分区或添加新的逻辑分区.下面介绍一下通过使用fdsik添加新的逻辑分区. 首先使用df命令检查文 ...
- RedHat 4下无resize2fs命令
在Red Hat Enterprise Linux AS release 4上进行LVM扩展分区时,发现RedHat 4下没有resize2fs,不过可以用ext2online替换resize2fs. ...
- SQL Server中使用PIVOT行转列
使用PIVOT行转列 1.建表及插入数据 USE [AdventureDB] GO /****** Object: Table [dbo].[Score] Script Date: 11/25/201 ...
- hibernate基础dao类
此文章是基于 搭建SpringMVC+Spring+Hibernate平台 功能:数据库的保存.更新.删除:sql.hql查询:分页查询:调用存储过程 创建hibernate基础dao类: BaseD ...
- linux小技巧
主机禁止ping: 修改/proc/sys/net/ipv4/icmp_echo_ignore_all 值为1 默认是0 echo '1' > /proc/sys/net/ipv4/icmp_e ...
- 你不一定懂的cpu显示信息
在linux命令中用top查看系统的情况,在cpu这一行有一些分部表示什么 下面有一篇博文,对此写的非常清楚,特转载.猛击下面的链接 http://www.cnblogs.com/yjf512/p/3 ...
- #ifndef _LED_H #endif啥意思?
#ifndef _LED_H#ifndef _LED_H ...... ...... #endif 避免重复引用头文件的内容.