NC16590 [NOIP2010]乌龟棋
题目
题目描述
小明过生日的时候,爸爸送给他一副乌龟棋当作礼物。
乌龟棋的棋盘是一行N 个格子,每个格子上一个分数(非负整数)。棋盘第1 格是唯一的起点,第N 格是终点,游戏要求玩家控制一个乌龟棋子从起点出发走到终点。
乌龟棋中M 张爬行卡片,分成4 种不同的类型(M 张卡片中不一定包含所有4 种类型的卡片见样例),每种类型的卡片上分别标有1、2、3、4 四个数字之一,表示使用这种卡片后,乌龟棋子将向前爬行相应的格子数。游戏中,玩家每次需要从所有的爬行卡片中选择一张之前没有使用过的爬行卡片,控制乌龟棋子前进相应的格子数,每张卡片只能使用一次。游戏中,乌龟棋子自动获得起点格子的分数,并且在后续的爬行中每到达一个格子,就得到该格子相应的分数。玩家最终游戏得分就是乌龟棋子从起点到终点过程中到过的所有格子的分数总和。
很明显,用不同的爬行卡片使用顺序会使得最终游戏的得分不同,小明想要找到一种卡片使用顺序使得最终游戏得分最多。
现在,告诉你棋盘上每个格子的分数和所有的爬行卡片,你能告诉小明,他最多能得到多少分吗?
输入描述
第1行2个正整数N和M,分别表示棋盘格子数和爬行卡片数。第2行N个非负整数,\(a_1, a_2,\cdots , a_N\),其中ai表示棋盘第i个格子上的分数。
第3行M个整数,\(b_1,b_2, \cdots , b_M\) ,表示M张爬行卡片上的数字。
输入数据保证到达终点时刚好用光M张爬行卡片,即 \(N-1= \sum_{1}^Mb_i\)
输出描述
输出只有1行,1个整数,表示小明最多能得到的分数。
示例1
输入
9 5
6 10 14 2 8 8 18 5 17
1 3 1 2 1
输出
73
说明
小明使用爬行卡片顺序为1,1,3,1,2,得到的分数为6+10+14+8+18+17=73。注意,
由于起点是1,所以自动获得第1格的分数6。
示例2
输入
13 8
4 96 10 64 55 13 94 53 5 24 89 8 30
1 1 1 1 1 2 4 1
输出
455
备注
对于30%的数据有1≤N≤30,1≤M≤12。对于50%的数据有1≤N≤120,1≤M≤50,且4种爬行卡片,每种卡片的张数不会超过20。
对于100%的数据有1≤N≤350,1≤M≤120,且4种爬行卡片,每种卡片的张数不会超过40;
\(0≤a_i≤100,1≤i≤N\) ;\(1≤b_i≤4,1≤i≤M\) 。输入数据保证 \(N-1= \sum_{1}^Mb_i\)
题解
知识点:线性dp。
考虑 \(dp[i][j][k][l]\) 为第一、二、三、四种卡分别用了 \(i,j,k,l\) 张。显然有转移方程:
\left \{
\begin{aligned}
dp[i-1][j][k][l]\\
dp[i][j-1][k][l]\\
dp[i][j][k-1][l]\\
dp[i][j][k][l-1]\\
\end{aligned}
\right \}
+a[d],d=i+2j+3k+4l+1
\]
注意一下边界即可。
时间复杂度 \(O(N)\)
空间复杂度 \(O(M+N^4)\)
代码
#include <bits/stdc++.h>
using namespace std;
int a[357], b[10], dp[107][107][107][107];
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n, m;
cin >> n >> m;
for (int i = 1;i <= n;i++) cin >> a[i];
for (int i = 1, tmp;i <= m;i++) cin >> tmp, b[tmp]++;
for (int i = 0;i <= b[1];i++) {
for (int j = 0;j <= b[2];j++) {
for (int k = 0;k <= b[3];k++) {
for (int l = 0;l <= b[4];l++) {
int d = i + j * 2 + k * 3 + l * 4 + 1;
dp[i][j][k][l] = max(
{
dp[max(0,i - 1)][j][k][l],
dp[i][max(0,j - 1)][k][l],
dp[i][j][max(0,k - 1)][l],
dp[i][j][k][max(0,l - 1)]
}
) + a[d];
}
}
}
}
cout << dp[b[1]][b[2]][b[3]][b[4]] << '\n';
return 0;
}
NC16590 [NOIP2010]乌龟棋的更多相关文章
- NOIP2010乌龟棋[DP 多维状态]
题目背景 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 题目描述 乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第N格是终点,游戏要求玩家控制一个乌龟棋子从起 ...
- NOIP2010 乌龟棋
2乌龟棋 题目背景 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 题目描述 乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第N格是终点,游戏要求玩家控制一个乌 ...
- CH5E01[NOIP2010] 乌龟棋[暴力]
众所周知,由于这个人太菜了,所以她又来切上古水题了. 显然最多$40^4$种状态,暴力跑出可以拼出多少种状态,然后按序号从小到大对应的状态瞎转移即可. 我知道我想繁了,但是不想改了,因为思路一出来,没 ...
- tyvj 1402 乌龟棋 dp
P1402 [NOIP2010]乌龟棋 时间: 1000ms / 空间: 131072KiB / Java类名: Main 背景 NOIP2010提高组复赛第二题 描述 小明过生日的时候,爸爸送给他一 ...
- NOIP2010提高组乌龟棋 -SilverN
题目背景 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 题目描述 乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第N格是终点,游戏要求玩家控制一个乌龟棋子从起 ...
- CJOJ 1087 【NOIP2010】乌龟棋 / Luogu 1541 乌龟棋(动态规划)
CJOJ 1087 [NOIP2010]乌龟棋 / Luogu 1541 乌龟棋(动态规划) Description 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 乌龟棋的棋盘是一行N个格子,每个 ...
- [NOIP2010] 提高组 洛谷P1541 乌龟棋
题目背景 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 题目描述 乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第N格是终点,游戏要求玩家控制一个乌龟棋子从起 ...
- 【NOIP2010】【P1317】乌龟棋
似乎很像搜索的DP(应该也可以用搜索写) 原题: 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物.乌龟棋的棋盘是一行N 个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第N 格是终点, ...
- 【洛谷1541】【CJOJ1087】【NOIP2010】乌龟棋
题面 Description 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第N格是终点,游戏要求玩家控制一个乌 ...
- luoguP1541 乌龟棋 题解(NOIP2010)
P1541 乌龟棋 题目 #include<iostream> #include<cstdlib> #include<cstdio> #include<cma ...
随机推荐
- 问题--C++单例模式中唯一对象初始化时关于在类外调用私有的无参构造问题
1.问题 在单例模式中初始化单例对象Person* Person::signal= new Person; 这一步在类外,而new Person需要调用私有的无参构造,但是只有在类内部才能调用私有函数 ...
- 利用工具查看JMS微服务在线情况,可直接调用远程方法,也可自动生成微服务客户端代码
链接:https://cccscls-my.sharepoint.com/personal/jack_mutc_ca/_layouts/15/onedrive.aspx?id=%2Fpersonal% ...
- MySQL 8.2.0部署安装验证
MySQL 8.2.0部署安装验证 背景 昨天捯饬了半天Oracle23c Free版本发现自己白忙活了. 然后想着继续看一下 MySQL8.2. 看看会不会又继续白忙活 下载与安装 https:// ...
- 极简版本Clickhouse监控步骤
极简版本Clickhouse监控步骤 背景 昨天处理了 鲲鹏920 上面的Clickhouse 的基于Docker的安装与部署 今天想着能够继续处理一下 增加监控信息 能够实现对clickhouse使 ...
- [粘贴]TiFlash
TiFlash 是 TiDB HTAP 形态的关键组件,它是 TiKV 的列存扩展,在提供了良好的隔离性的同时,也兼顾了强一致性.列存副本通过 Raft Learner 协议异步复制,但是在读取的时候 ...
- [转帖]Kafka高可用 — KRaft集群搭建
Apache Kafka Raft 是一种共识协议,它的引入是为了消除 Kafka 对 ZooKeeper 的元数据管理的依赖,被社区称之为 Kafka Raft metadata mode,简称 K ...
- [转帖]关于linux:NUMA架构下的内存延迟区别测试
https://lequ7.com/guan-yu-linuxnuma-jia-gou-xia-de-nei-cun-yan-chi-qu-bie-ce-shi.html 当初的服务器物理机CPU个别 ...
- [转帖]yum 下载全量依赖 rpm 包及离线安装(终极解决方案)
简介 通常生产环境由于安全原因都无法访问互联网.此时就需要进行离线安装,主要有两种方式:源码编译.rpm包安装.源码编译耗费时间长且缺乏编译环境,所以一般都选择使用离线 rpm 包安装. 验证环境 C ...
- CentOS确认网口是否插入网线的办法
最近公司的机器存在网络问题, 部分网络总是不通, 比较奇怪. 最近一直想处理好. 第一步: 先查看网口的设备信息 可以使用 ip link show 可以讲网口信息都展示出来. 一般情况下 NO-C ...
- 测试环境Nginx反向代理负载均衡模板说明
公司里面为了验证 https 以及域名特点进行了相关的测试工作. 为了简单起见 将 安装文件执行了导出. 这样的话就比较简单了. 注意说明一点的是 我这边导出的工具都是 放到根目录下面 目录最简单. ...