ICESat-2 ATL03光子数据读取
ICESat-2数据处理的方式一般为将光子数据投影到沿轨距离和高程的二维空间。如下图:
ATL03数据读取
H5是一种数据存储结构,读取原理就是按照该结构获取数据,这里给出两种读取方式。
ATL03的数据字典:ATL03 Product Data Dictionary (nsidc.org)
使用pandas
import warnings
import pandas as pd
def read_hdf5_atl03_beam_pandas(filename, beam, verbose=False):
# 打开HDF5文件进行读取
h5_store = pd.HDFStore(filename, mode='r')
root = h5_store.root
# 为ICESat-2 ATL03变量和属性分配python字典
atl03_mds = {}
# 读取文件中每个输入光束
# beams = [k for k in file_id.keys() if bool(re.match('gt\\d[lr]', k))]
beams = ['gt1l', 'gt1r', 'gt2l', 'gt2r', 'gt3l', 'gt3r']
if beam not in beams:
print('请填入正确的光束代码')
return
atl03_mds['heights'] = {}
atl03_mds['geolocation'] = {}
# -- 获取每个HDF5变量
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# -- ICESat-2 Heights Group
heights_keys = ['dist_ph_across', 'dist_ph_along', 'h_ph', 'lat_ph', 'lon_ph', 'signal_conf_ph']
for key in heights_keys:
atl03_mds['heights'][key] = root[beam]['heights'][key][:]
geolocation_keys = ['ref_elev', 'ph_index_beg', 'segment_id', 'segment_ph_cnt', 'segment_dist_x', 'segment_length']
# -- ICESat-2 Geolocation Group
for key in geolocation_keys:
atl03_mds['geolocation'][key] = root[beam]['geolocation'][key][:]
h5_store.close()
return atl03_mds
使用h5py
import os
import h5py
import re
def read_hdf5_atl03_beam_h5py(filename, beam, verbose=False):
"""
ATL03 原始数据读取
Args:
filename (str): h5文件路径
beam (str): 光束
verbose (bool): 输出HDF5信息
Returns:
返回ATL03光子数据的heights和geolocation信息
"""
# 打开HDF5文件进行读取
file_id = h5py.File(os.path.expanduser(filename), 'r')
# 输出HDF5文件信息
if verbose:
print(file_id.filename)
print(list(file_id.keys()))
print(list(file_id['METADATA'].keys()))
# 为ICESat-2 ATL03变量和属性分配python字典
atl03_mds = {}
# 读取文件中每个输入光束
beams = [k for k in file_id.keys() if bool(re.match('gt\\d[lr]', k))]
if beam not in beams:
print('请填入正确的光束代码')
return
atl03_mds['heights'] = {}
atl03_mds['geolocation'] = {}
atl03_mds['bckgrd_atlas'] = {}
# -- 获取每个HDF5变量
# -- ICESat-2 Measurement Group
for key, val in file_id[beam]['heights'].items():
atl03_mds['heights'][key] = val[:]
# -- ICESat-2 Geolocation Group
for key, val in file_id[beam]['geolocation'].items():
atl03_mds['geolocation'][key] = val[:]
for key, val in file_id[beam]['bckgrd_atlas'].items():
atl03_mds['bckgrd_atlas'][key] = val[:]
return atl03_mds
重建沿轨道距离
在读取ICESat-2 ATL03数据后,我们需要根据分段信息重建每个光子的沿轨道距离,已知数据如下:
ATL03每个分段内的光子都有一个沿轨道距离(
dist_ph_along
),该距离始于当前分段。ATL03每个分段有一个沿轨道距离(
segment_dist_x
),该距离始于赤道交叉口,即真正的沿轨道距离。当前分段内每个光子的相对沿轨道距离 + 当前分段的沿轨道距离 = 每个光子的真正沿轨道距离。
代码如下:
import numpy as np
def get_atl03_x_atc(atl03_mds):
val = atl03_mds
# 初始化
val['heights']['x_atc'] = np.zeros_like(val['heights']['h_ph']) + np.NaN
val['heights']['y_atc'] = np.zeros_like(val['heights']['h_ph']) + np.NaN
val['geolocation']['ref_elev_all'] = np.zeros_like(val['heights']['h_ph'])
# -- ATL03 Segment ID
segment_id = val['geolocation']['segment_id']
# -- 分段中的第一个光子(转换为基于0的索引)
segment_index_begin = val['geolocation']['ph_index_beg'] - 1
# -- 分段中的光子事件数
segment_pe_count = val['geolocation']['segment_ph_cnt']
# -- 每个ATL03段的沿轨道距离
segment_distance = val['geolocation']['segment_dist_x']
# -- 每个ATL03段的轨道长度
segment_length = val['geolocation']['segment_length']
# -- 对ATL03段进行迭代,以计算40m的平均值
# -- 在ATL03中基于1的索引:无效==0
# -- 此处为基于0的索引:无效==-1
segment_indices, = np.nonzero((segment_index_begin[:-1] >= 0) &
(segment_index_begin[1:] >= 0))
for j in segment_indices:
# -- j 段索引
idx = segment_index_begin[j]
# -- 分段中的光子数(使用2个ATL03分段)
c1 = np.copy(segment_pe_count[j])
c2 = np.copy(segment_pe_count[j + 1])
cnt = c1 + c2
# -- 沿轨道和跨轨道距离
# -- 获取当前段光子列表,idx当前段(j)第一个光子数量,c1当前段光子数量,idx+c1当前段长度
distance_along_x = np.copy(val['heights']['dist_ph_along'][idx: idx + cnt])
ref_elev = np.copy(val['geolocation']['ref_elev'][j])
# -- 给当前段的光子加上当前段沿轨道距离
distance_along_x[:c1] += segment_distance[j]
distance_along_x[c1:] += segment_distance[j + 1]
distance_along_y = np.copy(val['heights']['dist_ph_across'][idx: idx + cnt])
val['heights']['x_atc'][idx: idx + cnt] = distance_along_x
val['heights']['y_atc'][idx: idx + cnt] = distance_along_y
val['geolocation']['ref_elev_all'][idx: idx + c1] += ref_elev
ATL03数据截取
在处理ATL03时,我们一般都会获取经过研究区域内的光子数据,因此需要对数据进行截取操作,代码如下:
from glob import glob
from readers.get_ATL03_x_atc import get_atl03_x_atc
from readers.read_HDF5_ATL03 import read_hdf5_atl03_beam, read_hdf5_atl03_coordinate
def read_data(filepath, beam, mask_lat, mask_lon):
"""
读取数据,返回沿轨道距离和高程距离
:param filepath: h5文件路径
:param beam: 轨道光束
:param mask_lat: 维度范围
:param mask_lon: 经度范围
:return:
"""
atl03_file = glob(filepath)
is2_atl03_mds = read_hdf5_atl03_beam(atl03_file[0], beam=beam, verbose=False)
# 添加沿轨道距离到数据中
get_atl03_x_atc(is2_atl03_mds)
# 选择范围
d3 = is2_atl03_mds
subset1 = (d3['heights']['lat_ph'] >= min(mask_lat)) & (d3['heights']['lat_ph'] <= max(mask_lat))
if mask_lon is not None:
if mask_lon[0] is not None and mask_lon[1] is None:
subset1 = subset1 & (d3['heights']['x_atc'] >= mask_lon[0])
elif mask_lon[0] is None and mask_lon[1] is not None:
subset1 = subset1 & (d3['heights']['x_atc'] <= mask_lon[1])
else:
subset1 = subset1 & (d3['heights']['x_atc'] >= min(mask_lon)) & (d3['heights']['x_atc'] <= max(mask_lon))
x_act = d3['heights']['x_atc'][subset1]
h = d3['heights']['h_ph'][subset1]
signal_conf_ph = d3['heights']['signal_conf_ph'][subset1]
lat = d3['heights']['lat_ph'][subset1]
lon = d3['heights']['lon_ph'][subset1]
ref_elev = d3['geolocation']['ref_elev_all'][subset1]
del d3, subset1
return x_act, h, signal_conf_ph, lat, lon, ref_elev
def read_all_beam_coordinate(filepath, mask_lat, mask_lon):
"""
读取所有波束的数据
:param filepath:
:param mask_lat:
:param mask_lon:
:return:
"""
atl03_file = glob(filepath)
is2_atl03_mds = read_hdf5_atl03_coordinate(atl03_file[0])
# 禁止加载全部数据
# if mask_lat is None or len(mask_lat) == 0 or mask_lon is None or len(mask_lon) == 0:
# return False
d3 = is2_atl03_mds
if mask_lon is None and mask_lat is None:
# 加载全部数据
return d3
for beam in is2_atl03_mds.keys():
subset1 = (d3[beam]['lat'] >= min(mask_lat)) & (d3[beam]['lat'] <= max(mask_lat))
subset1 = subset1 & (d3[beam]['lon'] >= min(mask_lon)) & (d3[beam]['lon'] <= max(mask_lon))
d3[beam]['lat'] = d3[beam]['lat'][subset1]
d3[beam]['lon'] = d3[beam]['lon'][subset1]
return d3
数据可视化
使用沿轨道距离和高程数据绘制散点图,示例代码如下:
def save2file(act, h, conf, lat, lon):
"""
保存研究区域的一下数据
:param act: act,沿轨道距离
:param h: h,高程
:param conf: 置信度
:param lat: 维度
:param lon: 经度
"""
points = list(zip(act, h, lat, lon, conf))
data = pd.DataFrame(points, columns=['沿轨道距离', '高程', '维度', '经度', '置信度'])
data.to_csv('result/points_origin.csv', mode='w', index=False)
if __name__ == '__main__':
filepath = r'D:\Users\SongW\Downloads\ATL03_20190222135159_08570207_005_01.h5'
beam = 'gt3l'
mask_lat = [16.533, 16.550]
act, h, conf, lat, lon, ref_elev = read_data(filepath, beam, mask_lat, None)
save2file(act, h, conf, lat, lon)
plt.scatter(act, h)
plt.show()
输出图像如下:
项目源码
sx-code - icesat-2-atl03 (github.com)
ICESat-2 ATL03光子数据读取的更多相关文章
- OleDbDataReader快速数据读取方式
查询得到OleDbDataReader后,有三种方式支持数据读取,如下: //方法一**速度中等 OleDbDataReader reader = command.ExecuteReader(); w ...
- DataTable to Excel(使用NPOI、EPPlus将数据表中的数据读取到excel格式内存中)
/// <summary> /// DataTable to Excel(将数据表中的数据读取到excel格式内存中) /// </summary> /// <param ...
- geotrellis使用(二)geotrellis-chatta-demo以及geotrellis框架数据读取方式初探
在上篇博客(geotrellis使用初探)中简单介绍了geotrellis-chatta-demo的大致工作流程,但是有一个重要的问题就是此demo如何调取数据进行瓦片切割分析处理等并未说明,经过几天 ...
- GPS数据读取与处理
GPS数据读取与处理 GPS模块简介 SiRF芯片在2004年发布的最新的第三代芯片SiRFstar III(GSW 3.0/3.1),使得民用GPS芯片在性能方面登上了一个顶峰,灵敏度比以前的产品大 ...
- 【原】Learning Spark (Python版) 学习笔记(二)----键值对、数据读取与保存、共享特性
本来应该上周更新的,结果碰上五一,懒癌发作,就推迟了 = =.以后还是要按时完成任务.废话不多说,第四章-第六章主要讲了三个内容:键值对.数据读取与保存与Spark的两个共享特性(累加器和广播变量). ...
- MATLAB对于文本文件(txt)数据读取的技巧总结(经典中的经典)
振动论坛原版主eight的经典贴http://www.chinavib.com/thread-45622-1-1.html MATLAB对于文本文件(txt)进行数据读取的技巧总结(经典中的经典)由于 ...
- TableInputFormat分片及分片数据读取源码级分析
我们在MapReduce中TextInputFormat分片和读取分片数据源码级分析 这篇中以TextInputFormat为例讲解了InputFormat的分片过程以及RecordReader读取分 ...
- Extjs的数据读取器store和后台返回类型简单解析
工作中用到了Extjs,从后台获取数据的时候,用到了extjs自己的Ext.data.store方法,然后封装了ExtGridReturn方法, 目的:前台用到Ext.data.store读取从后台传 ...
- Java学习-028-JSON 之二 -- 数据读取
JSON数据由 JSONObject.JSONArray.key_value 组合而成.通常来说,JSONObject 可以包含 JSONObject.JSONArray.key_value:JSON ...
- [原创]SSIS-WMI 数据读取器任务:监控物理磁盘空间
背景: 随着时间的推移,我们的DW会越来越大,也就意味着磁盘空间会越来越小,那如果哪一天留意不当,就会造成磁盘空间的不足而导致ETL失败,最终影响我们的系统的数据正确性和使用,更严重的有可 ...
随机推荐
- C++调用Python-6:调用Python类
# mytest.py class Test: def hello(self): print("this is test class hello function no params ret ...
- Jenkins安装插件很慢的解决方法
修改 Jenkins / update / default.json 这个文件就可以了 修改内容 1. 把 " www.google.com " 改成 " h ...
- GAN的一些问题
GAN为什么难以训练? 大多深度模型的训练都使用优化算法寻找损失函数比较低的值.优化算法通常是个可靠的"下山"过程.生成对抗神经网络要求双方在博弈的过程中达到势均力敌(均衡).每个 ...
- centos6.5源码编译http2.4.9、虚拟主机、基于用户认证
centos6.5源码编译http2.4.9.虚拟主机.基于用户认证 2014-04-23 07:45 作者: 51linux 来源: 本站 浏览: 0 views 我要评论 字号: 大 中 ...
- mysql 必知必会整理—存储过程[十三]
前言 简单整理一下存储过程. 正文 需要MySQL 5 MySQL 5添加了对存储过程的支持,因此,本章内容适用于MySQL 5及以后的版本. 迄今为止,使用的大多数SQL语句都是针对一个或多个表的单 ...
- 重新点亮linux 命令树————用户和用户组的配置文件[八]
前言 简单整理一下 正文 首先看下vim /etc/passwd 这个东西. 可以看到这些就是我们的用户表. 刚才我们创建的user1就在末尾了. 那么下面有这个x:1001:1001 这个是什么意思 ...
- mysql 重新整理——sql 执行语句的顺序[五]
前言 盗图: 其实在复杂的语句中,需要我们逐步去分析,然后呢,我们了解一些优化器到底是如何帮我们优化的,就知道到底是mysql怎么执行代码. 我把以前的丢了,后续补全.
- 低成本FPGA的MIPI测试GOWIN和LATTICE CROSSLINK
本次实验MIPI屏,2.0寸,分辨率是240*320 RGB888, 接口如下: 接上IO就是RST和MIPI的时钟和数据接口,另外就是电源和地. 一:GOWIN的测试方案 Gowin的案例中,首先是 ...
- 10亿+文件数压测,阿里云JindoFS轻松应对
简介: Apache Hadoop FileSystem (HDFS) 是被广为使用的大数据存储方案,其核心元数据服务 NameNode 将全部元数据存放在内存中,因此所能承载的元数据规模受限于内存, ...
- Windows 对全屏应用的优化
全屏应用对应的是窗口模式应用,全屏应用指的是整个屏幕都是被咱一个应用独占了,屏幕上没有显示其他的应用,此时的应用就叫全屏应用.如希沃白板这个程序.本文主要告诉大家从微软官方的文档以及考古了解到的 Wi ...