@

最近在学习juc并发编程,于是决定汇总一下并发编程中常用方法,常见问题以及常见考题,今天是第一章—CompletableFuture

CompletableFuture介绍

CompletableFuture是jdk8版本开始出现的类。目的是为了应用于并发编程状态下遇到的各种场景。CompletableFuture实现了CompletionStage接口和Future接口,对Java7及以前Future接口做了大量的扩展,增加了许多常用方法,增加了异步会点、流式处理、多个Future组合处理的能力,使Java在处理多任务的协同工作时更加顺畅便利。

首先得学会看懂几个函数式接口的特性!!!(重点)

1.创建异步任务

//runAsync方法不支持返回值
public static CompletableFuture<Void> runAsync(Runnable runnable)
public static CompletableFuture<Void> runAsync(Runnable runnable, Executor executor)
//supplyAsync可以支持返回值
public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier)
public static <U> CompletableFuture<U> supplyAsync(Supplier<U> supplier, Executor executor)

CompletableFuture创建异步任务主要分为两个方法runAsync和supplyAsync

其中

  1. runAsync方法不支持返回值
  2. supplyAsync可以支持返回值(常用)
  3. 没有指定Executor的方法会使用ForkJoinPool.commonPool() 作为它的线程池执行异步代码。如果指定线程池,则使用指定的线程池运行。

下面是四种创建方式

public class CompletableFutureTest {
public static void main(String[] args) throws Exception{
ThreadPoolExecutor executor = new ThreadPoolExecutor(
5,5,5
TimeUnit.MINUTES,
new LinkedBlockingQueue<>(10));
CompletableFuture future1=CompletableFuture.runAsync(()->{
System.out.println(Thread.currentThread().getName()+"*********future1 coming in");
});
//这里获取到的值是null,无返回值
System.out.println(future1.get());
CompletableFuture<Void> future2 = CompletableFuture.runAsync(() -> {
//ForkJoinPool.commonPool-worker-9
System.out.println(Thread.currentThread().getName() + "\t" + "*********future2 coming in");
}, executor);
CompletableFuture<Integer> future3 =CompletableFuture.supplyAsync(()-> {
//pool-1-thread-1
System.out.println(Thread.currentThread().getName() + "\t" + "future3带有返回值");
return "abc";
});
System.out.println(future3.get());
CompletableFuture<Integer> future4 = CompletableFuture.supplyAsync(() -> {
System.out.println(Thread.currentThread().getName() + "\t" + "future4带有返回值");
return "abc";
}, executor);
System.out.println(future4.get());
//关闭线程池
executor.shutdown();
}
}

2.CompletableFuture API

①. 获得结果和触发计算(get、getNow、join、complete)

获得结果和触发计算(get、getNow、join、complete)

  1. public T get( ):不见不散(会抛出异常) 只要调用了get( )方法,不管是否计算完成都会导致阻塞
  2. public T get(long timeout, TimeUnit unit):过时不候
  3. public T getNow(T valuelfAbsent):没有计算完成的情况下,给我一个替代结果计算完,返回计算完成后的结果、没算完,返回设定的valuelfAbsent
  4. public T join( ):join方法和get( )方法作用一样,唯一区别是join方法编译时不需要手动抛异常

  1. public CompletableFuture thenApply:计算结果存在依赖关系,这两个线程串行化,由于存在依赖关系(当前步错,不走下一步),当前步骤有异常的话就叫停
  2. public CompletableFuture handle(BiFunction<? super T, Throwable, ? extends U> fn):有异常也可以往下一步走,根据带的异常参数可以进一步处理
  3. whenComplete:是执行当前任务的线程执行继续执行whenComplete的任务
  4. whenCompleteAsync:是执行把whenCompleteAsync这个任务继续提交给线程池来进行执行

②. 对计算结果进行处理(thenApply、handle)

  1. public CompletableFuture thenApply:计算结果存在依赖关系,这两个线程串行化由于存在依赖关系(当前步错,不走下一步),当前步骤有异常的话就叫停
  2. public CompletableFuture handle(BiFunction<? super T, Throwable, ? extends U> fn):有异常也可以往下一步走,根据带的异常参数可以进一步处理
  3. whenComplete:是执行当前任务的线程执行继续执行whenComplete的任务
  4. whenCompleteAsync:是执行把whenCompleteAsync这个任务继续提交给线程池来进行执行

     CompletableFuture<Integer> future = CompletableFuture.supplyAsync(() -> {
try { TimeUnit.SECONDS.sleep(1); } catch (InterruptedException e) {e.printStackTrace();}
return 1;
}).thenApply(s->{
System.out.println("-----1");
//如果加上int error=1/0; 由于存在依赖关系(当前步错,不走下一步),当前步骤有异常的话就叫停
//int error=1/0;
return s+1;
}).thenApply(s->{
System.out.println("-----2");
return s+2;
}).whenComplete((v,e)->{
if(e==null){
System.out.println("result-----"+v);
}
}).exceptionally(e->{
e.printStackTrace();
return null;
});
System.out.println(Thread.currentThread().getName()+"\t"+"over....");
try { TimeUnit.SECONDS.sleep(3); } catch (InterruptedException e) {e.printStackTrace();} CompletableFuture.supplyAsync(() -> {
return 1;
}).handle((f,e) -> {
System.out.println("-----1");
return f + 2;
}).handle((f,e) -> {
System.out.println("-----2");
int error=1/0;
return f + 3;
}).handle((f,e) -> {
System.out.println("-----3");
return f + 4;
}).whenComplete((v, e) -> {
if (e == null) {
System.out.println("----result: " + v);
}
}).exceptionally(e -> {
e.printStackTrace();
return null;
}).join());

③. 对计算结果进行消费(thenRun、thenAccept、thenApply)

  1. thenRun(Runnable runnable)

    任务A执行完执行B,并且B不需要A的结果
  2. CompletableFutur thenAccept(Consumer<? super T> action)

    任务A执行完成执行B,B需要A的结果,但是任务B无返回值
  3. public CompletableFuture thenApply(Function<? super T,? extends U> fn)



4. 线程串行化方法

带了Async的方法表示的是:会重新在线程池中启动一个线程来执行任务

public <U> CompletableFuture<U> thenApply(Function<? super T,? extends U> fn)
public <U> CompletableFuture<U> thenApplyAsync(Function<? super T,? extends U> fn)
public <U> CompletableFuture<U> thenApplyAsync(Function<? super T,? extends U> fn, Executor executor)
public CompletableFuture<Void> thenAccept(Consumer<? super T> action)
public CompletableFuture<Void> thenAcceptAsync(Consumer<? super T> action)
public CompletableFuture<Void> thenAcceptAsync(Consumer<? super T> action,Executor executor)
public CompletableFuture<Void> thenRun(Runnable action)
public CompletableFuture<Void> thenRunAsync(Runnable action)
public CompletableFuture<Void> thenRunAsync(Runnable action,Executor executor)

④. 对计算速度进行选用(applyToEither、acceptEither、runAfterEither)

  1. public CompletableFuture applyToEither(CompletionStage<? extends T> other, Function<? super T, U> fn)

    这个方法表示的是,谁完成任务完成的快就返回谁的结果

  2. 两任务组合,一个完成

    applyToEither:两个任务有一个执行完成,获取它的返回值,处理任务并有新的返回值

    acceptEither:两个任务有一个执行完成,获取它的返回值,处理任务,没有新的返回值

    runAfterEither:两个任务有一个执行完成,不需要获取 future 的结果,处理任务,也没有返回值

⑤. 对计算结果进行合并(thenCombine、thenAcceptBoth、runAfterBoth)

  1. public <U,V> CompletableFuture thenCombine(CompletionStage<? extends U> other,BiFunction<? super T,? super U,? extends V> fn)

    两个CompletionStage任务都完成后,最终把两个任务的结果一起交给thenCombine来处理先完成的先等着,等待其他分支任务

⑥. 多任务组合(allOf、anyOf)

  1. allOf:等待所有任务完成

    (public static CompletableFuture allOf(CompletableFuture<?>... cfs))
  2. anyOf:只要有一个任务完成

    (public static CompletableFuture anyOf(CompletableFuture<?>... cfs))

实战演练

案例说明:电商比价需求

同一款产品,同时搜索出同款产品在各大电商的售价;

同一款产品,同时搜索出本产品在某一个电商平台下,各个入驻门店的售价是多少

出来结果希望是同款产品的在不同地方的价格清单列表,返回一个List

in jd price is 88.05

in pdd price is 86.11

in taobao price is 90.43

(String类型)

代码示例

public class test1 {

    public ExecutorService executorService = new ThreadPoolExecutor(40,100,100,TimeUnit.MINUTES,new ArrayBlockingQueue<>(10000));
public static List<mall> list = Arrays.asList(
new mall("jd"),
new mall("tmall"),
new mall("taobao"),
new mall("pdd"),
new mall("elm")
); public static void main(String[] args) {
showRes3(list,"mysql");
}
public static List<String> showRes(List<mall> list,String productName){
long start = System.currentTimeMillis();
List<String> collect = list.stream().map(mall -> String.format(productName + " in %s price is %.2f", mall.getName(), mall.getPrice(productName))).collect(Collectors.toList());
collect.forEach(System.out::println);
long end = System.currentTimeMillis();
System.out.println("耗时:"+(end-start)+"秒");
return collect;
}
public static List<String> showRes2(List<mall> list,String productName){
long start = System.currentTimeMillis();
List<String> collect = list.parallelStream().map(mall -> CompletableFuture.supplyAsync(() ->
String.format(productName + " in %s price is %.2f", mall.getName(), mall.getPrice(productName))
).join()).collect(Collectors.toList());
long end = System.currentTimeMillis();
collect.forEach(System.out::println);
System.out.println("耗时:"+(end-start)+"秒");
return collect;
} public static List<String> showRes3(List<mall> list,String productName){
long start = System.currentTimeMillis();
List<String> collect = list.stream().map(mall -> CompletableFuture.supplyAsync(() -> String.format(productName + " in %s price is %.2f", mall.getName(), mall.getPrice(productName))
)).collect(Collectors.toList()).stream().map(s -> s.join()).collect(Collectors.toList());
long end = System.currentTimeMillis();
collect.forEach(System.out::println);
System.out.println("耗时:"+(end-start)+"毫秒");
return collect;
} } class mall{
private String name; public String getName() {
return name;
} public mall(String name) {
this.name = name;
} public double getPrice(String productName){
try {
TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
return ThreadLocalRandom.current().nextDouble()*2+productName.charAt(0);
}
}

通过上面代码示例结果得知

通过异步线程方法耗时需要1000毫秒左右

而同步线程方法耗时需要5000毫秒

而且当商城店铺越来越多的时候,异步线程耗时不会增加,同步线程耗时会不断增加,异步的优势就显现出来了。

tips

在使用stream流的时候,如果使用的是集合的stream()方法,再使用异步线程时比如使用join()方法会出现串行,和上面方法三一样得使用两次stream流才能实现异步执行,相当于每一步都得使用stream流。

这个时候可以使用parallelStream并行流就可以解决这个问题

但是使用parallelStream会出现一些问题,所以并行流要谨慎使用!!!

并行流的陷阱

  1. 线程安全

    由于并行流使用多线程,则一切线程安全问题都应该是需要考虑的问题,如:资源竞争、死锁、事务、可见性等等。
  2. 线程消费

    在虚拟机启动时,我们指定了worker线程的数量,整个程序的生命周期都将使用这些工作线程;这必然存在任务生产和消费的问题,如果某个生产者生产了许多重量级的任务(耗时很长),那么其他任务毫无疑问将会没有工作线程可用;更可怕的事情是这些工作线程正在进行IO阻塞。

JUC并发编程(1)—CompletableFuture详解的更多相关文章

  1. 多线程JUC并发篇常见面试详解

    @ 目录 1.JUC 简介 2.线程和进程 3.并非与并行 4.线程的状态 5.wait/sleep的区别 6.Lock 锁(重点) 1.Lock锁 2.公平非公平: 3.ReentrantLock ...

  2. Java 并发编程 | 线程池详解

    原文: https://chenmingyu.top/concurrent-threadpool/ 线程池 线程池用来处理异步任务或者并发执行的任务 优点: 重复利用已创建的线程,减少创建和销毁线程造 ...

  3. 并发编程——IO模型详解

    ​ 我是一个Python技术小白,对于我而言,多任务处理一般就借助于多进程以及多线程的方式,在多任务处理中如果涉及到IO操作,则会接触到同步.异步.阻塞.非阻塞等相关概念,当然也是并发编程的基础. ​ ...

  4. Android并发编程之白话文详解Future,FutureTask和Callable

    从最简单的说起Thread和Runnable 说到并发编程,就一定是多个线程并发执行任务.那么并发编程的基础是什么呢?没错那就是Thread了.一个Thread可以执行一个Runnable类型的对象. ...

  5. 从缓存入门到并发编程三要素详解 Java中 volatile 、final 等关键字解析案例

    引入高速缓存概念 在计算机在执行程序时,以指令为单位来执行,每条指令都是在CPU中执行的,而执行指令过程中,势必涉及到数据的读取和写入. 由于程序运行过程中的临时数据是存放在主存(物理内存)当中的,这 ...

  6. 并发编程 || Java线程详解

    通用线程模型 在很多研发当中,实际应用是基于一个理论再进行优化的.所以,在了解JVM规范中的Java线程的生命周期之前,我们可以先了解通用的线程生命周期,这有助于我们后续对JVM线程生命周期的理解. ...

  7. java 并发编程lock使用详解

    浅谈Synchronized: synchronized是Java的一个关键字,也就是Java语言内置的特性,如果一个代码块被synchronized修饰了,当一个线程获取了对应的锁,执行代码块时,其 ...

  8. 跟着阿里p7一起学java高并发 - 第19天:JUC中的Executor框架详解1,全面掌握java并发核心技术

    这是java高并发系列第19篇文章. 本文主要内容 介绍Executor框架相关内容 介绍Executor 介绍ExecutorService 介绍线程池ThreadPoolExecutor及案例 介 ...

  9. java高并发系列 - 第20天:JUC中的Executor框架详解2之ExecutorCompletionService

    这是java高并发系列第20篇文章. 本文内容 ExecutorCompletionService出现的背景 介绍CompletionService接口及常用的方法 介绍ExecutorComplet ...

  10. Java网络编程和NIO详解开篇:Java网络编程基础

    Java网络编程和NIO详解开篇:Java网络编程基础 计算机网络编程基础 转自:https://mp.weixin.qq.com/s/XXMz5uAFSsPdg38bth2jAA 我们是幸运的,因为 ...

随机推荐

  1. 【Photoshop】切图保存小坑(选择png格式得到gif问题)

    默认情况下:Photoshop 导出切片为[GIF]格式 当你很嗨皮的把[GIF]调整为[PNG]或[JPG]格式,并保存时: 你会发现,自己的图片格式莫名其妙还是[GIF]: 但,我们的期望是: 原 ...

  2. 【HarmonyOS】详解低代码端云一体化开发之连接器

    ​[关键字] 元服务.低代码平台.端云一体化开发.连接器.拖拽式UI [1.写在前面] 前面我们写了两篇文章分别介绍了低代码平台的基本使用和端云一体化开发中数据模型的使用,有需要的可以了解一下,文章地 ...

  3. 基于OLAP技术的企业级大数据分析平台的国际化发展与合作

    目录 标题:<基于OLAP技术的企业级大数据分析平台的国际化发展与合作> 背景介绍 随着全球化的不断推进,企业对大数据分析的需求日益增长.企业通过数据分析来发现隐藏在业务数据中的机会,从而 ...

  4. GPT3的应用领域:机器翻译、文本生成、文本摘要

    目录 1. 引言 2. 技术原理及概念 3. 实现步骤与流程 3.1 准备工作:环境配置与依赖安装 3.2 核心模块实现 3.3 集成与测试 4. 应用示例与代码实现讲解 4.1 机器翻译 4.2 文 ...

  5. AI室内设计:提升效率、消除沟通障碍,满足客户需求

    前言 免费AI绘图工具:https://www.topgpt.one 随着人工智能(AI)技术的不断发展,室内设计行业也开始受益于这一技术的应用.其中,AI绘画工具在室内设计中的应用正日益受到关注.这 ...

  6. 什么是ORM (object real mapping)

    一.ORM简介        对象关系映射(Object Relational Mapping,简称ORM)模式是一种为了解决面向对象与关系数据库存在的互不匹配的现象的技术.简单的说,ORM是通过使用 ...

  7. 应用CS5266设计一款TYPEC转HDMI带PD3.0+USB3.1扩展坞方案电路图

    目前市场TYPEC扩展坞有很多,基本都是大同小异,主要功能是TYPEC转HDMI带PD+USB3.1+RJ45+SD/TF读卡器等多种接口,由于产品类型较多,成本也都是越做越低,CS瑞奇达就开发一系列 ...

  8. CDMP国际数据治理认证训练营来了(7-8月)

    大家好,我是独孤风,一位曾经的港口煤炭工人,目前在某国企任大数据负责人,公众号大数据流动主理人.在最近的两年的时间里,因为公司的需求,还有大数据的发展趋势所在,我开始学习数据治理的相关知识. 经过一段 ...

  9. Windows下打开指定目录并定位到具体文件

    一.在Windows上,网上流传的几种方法可以打开目录并定位到指定文件: 1.使用系统调用: 使用system()函数执行操作系统的命令行命令. 在命令行命令中,使用explorer /select, ...

  10. 基于thumbnailator封装图片处理工具类,实现图片的裁剪、压缩、图片水印、文字水印、多行文字水印等功能

    目录 一.前言 二.工具类的依赖和简单介绍 1.添加依赖 2.简单的使用 3.加载需要处理的图片 4.添加图片处理规则 4.1 Builder的方式 4.2 使用规则工厂的方式 5.输出处理后的图片 ...