LeetCode674. 最长连续递增序列

  • 阅读本文之前,需要先了解“动态规划方法论”,这在我的文章以前有讲过

链接:动态规划方法论

  • 本文之前也讲过一篇文章:最长递增子序列,这道题,阅读本文的同时可以与“最长递增子序列进行对比”,这样更能对比二者的区别!

LeetCode300.最长递增子序列 - Tomorrowland_D - 博客园 (cnblogs.com)

  • leetcode链接如下

力扣题目链接:

题目叙述

给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。

连续递增的子序列 可以由两个下标 l 和 r(l < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。

示例 1:

  • 输入:nums = [1,3,5,4,7]
  • 输出:3
  • 解释:最长连续递增序列是 [1,3,5], 长度为3。尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。

示例 2:

  • 输入:nums = [2,2,2,2,2]
  • 输出:1
  • 解释:最长连续递增序列是 [2], 长度为1。

提示:

  • 0 <= nums.length <= 10^4
  • -10^9 <= nums[i] <= 10^9

动态规划思路讲解:

状态变量及其含义

  • 我们可以设置状态变量dp[i],表示以nums[i]为结尾的最长连续子序列的长度

递推公式

  • 这里我们不需要j指针,只需要将nums[i]与nums[i-1]作比较,判断它们两个是否能继续构成连续递增子序列,如果nums[i]<nums[i-1],证明nums[i]不能与nums[i-1]构成连续递增子序列,所以说dp[i]=0

  • nums[i]>nums[i-1]时,意味nums[i]与前面能继续构成连续递增子序列,所以dp[i]=dp[i-1]+1

  • 故而递推公式为:

    • dp[i]=0 (nums[i]<=nums[i-1]);
    • dp[i]=dp[i-1]+1 (nums[i]>nums[i-1])

遍历顺序

  • 这题dp[i]需要由dp[i-1]来推理出来,所以说遍历顺序显然是从前向后遍历。

如何初始化dp数组?

  • 显然,一开始dp数组中的所有元素都初始化为1,因为每个元素至少都有一个最长连续递增子序列。

举例验证dp数组

  • 举例:nums = [1,3,5,4,7]

    • dp[0]=1
    • dp[1]=2
    • dp[2]=3
    • dp[3]=0
    • dp[4]=2
  • 通过示例1的分析,我们也可以得知我们的dp数组是正确的

代码实现:

class Solution {
public:
int findLengthOfLCIS(vector<int>& nums) {
//全都初始化为1
vector<int> dp(nums.size(),1);
//结果至少是1
int ans=1;
for(int i=1;i<nums.size();i++){
if(nums[i]>nums[i-1]) dp[i]=dp[i-1]+1;
ans=max(ans,dp[i]);
}
return ans;
}
};

线性dp:LeetCode674. 最长连续递增序列的更多相关文章

  1. [Swift]LeetCode674. 最长连续递增序列 | Longest Continuous Increasing Subsequence

    Given an unsorted array of integers, find the length of longest continuous increasing subsequence (s ...

  2. LeetCode674. 最长连续递增序列

    原题链接 1 class Solution: 2 def findLengthOfLCIS(self, nums: List[int]) -> int: 3 ans = begin = 0 4 ...

  3. Leetcode674.Longest Continuous Increasing Subsequence最长连续递增序列

    给定一个未经排序的整数数组,找到最长且连续的的递增序列. 示例 1: 输入: [1,3,5,4,7] 输出: 3 解释: 最长连续递增序列是 [1,3,5], 长度为3. 尽管 [1,3,5,7] 也 ...

  4. LeetCode 最长连续递增序列

    给定一个未经排序的整数数组,找到最长且连续的的递增序列. 示例 1: 输入: [1,3,5,4,7] 输出: 3 解释: 最长连续递增序列是 [1,3,5], 长度为3. 尽管 [1,3,5,7] 也 ...

  5. 【LeetCode动态规划#14】子序列系列题(最长递增子序列、最长连续递增序列、最长重复子数组、最长公共子序列)

    最长递增子序列 力扣题目链接(opens new window) 给你一个整数数组 nums ,找到其中最长严格递增子序列的长度. 子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其 ...

  6. LeetCode 674. Longest Continuous Increasing Subsequence (最长连续递增序列)

    Given an unsorted array of integers, find the length of longest continuous increasing subsequence. E ...

  7. [LeetCode] Longest Continuous Increasing Subsequence 最长连续递增序列

    Given an unsorted array of integers, find the length of longest continuous increasing subsequence. E ...

  8. [LeetCode] 674. Longest Continuous Increasing Subsequence 最长连续递增序列

    Given an unsorted array of integers, find the length of longest continuous increasing subsequence. E ...

  9. leetcode 674. 最长连续递增序列

    1. 题目 给定一个未经排序的整数数组,找到最长且连续的的递增序列. 示例 1: 输入: [1,3,5,4,7] 输出: 3 解释: 最长连续递增序列是 [1,3,5], 长度为3. 尽管 [1,3, ...

  10. LeetCode 674. 最长连续递增序列(Longest Continuous Increasing Subsequence) 18

    674. 最长连续递增序列 674. Longest Continuous Increasing Subsequence 题目描述 给定一个未经排序的整型数组,找到最长且连续的递增序列. Given ...

随机推荐

  1. 详细讲解 Keil Pack Installer,以及通过 Keil 官网获取 Pack

    前言 大家好,我是梁国庆. 收到粉丝留言,说 Keil 安装 Pack 不太明白,可不可以详细演示一下? 当然可以有,直接视频+文章全部安排,我就是宠粉. PS:第一次录视频有些紧张,见谅哈. 微信视 ...

  2. 🚀 Karpor - 让 AI 全面赋能 Kubernetes!

    什么是 Karpor? 一言以蔽之,Karpor 是一个现代化的 Kubernetes 可视化工具,核心特性聚焦在  搜索. 洞察. AI ,目标是更方便快捷地连接平台和多集群,并用 AI 赋能 Ku ...

  3. Linux系统用户组管理

    用户管理 ​ 和Windows一样在Linux中也存在许多用户,可以登陆Linux,和Windows不同的是,在Windows中同一时刻只可以存在一个用户登录系统,而在Linux中是允许多个用户同时登 ...

  4. Java反射与Fastjson的危险反序列化

    Preface 在前文中,我们介绍了 Java 的基础语法和特性和 fastjson 的基础用法,本文我们将深入学习fastjson的危险反序列化以及预期相关的 Java 概念. 什么是Java反射? ...

  5. rem适配布局

    没有一张图解决不了的事 https://www.processon.com/mindmap/5e3a589be4b021dc2899f511 <link rel="stylesheet ...

  6. 拥抱未来:GPT-4将如何改变我们的世界

    随着人工智能技术的迅猛发展,我们正迎来一个全新的智能时代.在这个时代的前沿,GPT-4作为开拓者和领航者,正在重新定义人机交互.创意创新和个性化服务的标准.无论是在商业领域.教育场景还是科研领域,GP ...

  7. PHP函数http_build_query使用详解

    什么是http_build_query? 使用给出的关联(或下标)数组生成一个经过 URL-encode 的请求字符串.参数 formdata 可以是数组或包含属性的对象.一个 formdata 数组 ...

  8. 微服务:nacos服务注册与发现

    服务治理的三个角色: 服务提供者:订阅服务 服务消费者:注册服务 注册中心:记录与监控服务状态,推送服务变更信息.提供者定时发送心跳检测,心跳检测失败,就会向消费者推送变更 提供者通过负载均衡的算法选 ...

  9. 7、SpringBoot2之整合事务及AOP

    本文在SpringBoot2之整合Mybatis的基础上进行 7.1.整合事务 7.1.1.mapper接口 int deleteEmployeeById(int id); 7.1.2.mapper映 ...

  10. 【JavaWeb】HttpClient

    需要的依赖: <!-- https://mvnrepository.com/artifact/org.apache.httpcomponents/httpclient --> <de ...