线性dp:LeetCode674. 最长连续递增序列
LeetCode674. 最长连续递增序列
- 阅读本文之前,需要先了解“动态规划方法论”,这在我的文章以前有讲过
- 本文之前也讲过一篇文章:最长递增子序列,这道题,阅读本文的同时可以与“最长递增子序列进行对比”,这样更能对比二者的区别!
LeetCode300.最长递增子序列 - Tomorrowland_D - 博客园 (cnblogs.com)
- leetcode链接如下
题目叙述
给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。
连续递增的子序列 可以由两个下标 l 和 r(l < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。
示例 1:
- 输入:nums = [1,3,5,4,7]
- 输出:3
- 解释:最长连续递增序列是 [1,3,5], 长度为3。尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。
示例 2:
- 输入:nums = [2,2,2,2,2]
- 输出:1
- 解释:最长连续递增序列是 [2], 长度为1。
提示:
- 0 <= nums.length <= 10^4
- -10^9 <= nums[i] <= 10^9
动态规划思路讲解:
- 这道题与[最长递增子序列](LeetCode300.最长递增子序列 - Tomorrowland_D - 博客园 (cnblogs.com))的区别就是,最长递增子序列是可以不连续的,而最长连续递增序列必须要是连续的。
- 我们这道题仍然可以采用dp[i]的思想,而这里的dp[i]与最长递增子序列的dp[i]就差不多了,但不是完全一致
状态变量及其含义
- 我们可以设置状态变量dp[i],表示以nums[i]为结尾的最长连续子序列的长度
递推公式
这里我们不需要j指针,只需要将
nums[i]与nums[i-1]
作比较,判断它们两个是否能继续构成连续递增子序列,如果nums[i]<nums[i-1]
,证明nums[i]
不能与nums[i-1]
构成连续递增子序列,所以说dp[i]=0
当
nums[i]>nums[i-1]
时,意味nums[i]与前面能继续构成连续递增子序列,所以dp[i]=dp[i-1]+1
故而递推公式为:
dp[i]=0 (nums[i]<=nums[i-1]);
dp[i]=dp[i-1]+1 (nums[i]>nums[i-1])
遍历顺序
- 这题dp[i]需要由dp[i-1]来推理出来,所以说遍历顺序显然是从前向后遍历。
如何初始化dp数组?
- 显然,一开始dp数组中的所有元素都初始化为1,因为每个元素至少都有一个最长连续递增子序列。
举例验证dp数组
- 举例:nums = [1,3,5,4,7]
- dp[0]=1
- dp[1]=2
- dp[2]=3
- dp[3]=0
- dp[4]=2
- 通过示例1的分析,我们也可以得知我们的dp数组是正确的
代码实现:
class Solution {
public:
int findLengthOfLCIS(vector<int>& nums) {
//全都初始化为1
vector<int> dp(nums.size(),1);
//结果至少是1
int ans=1;
for(int i=1;i<nums.size();i++){
if(nums[i]>nums[i-1]) dp[i]=dp[i-1]+1;
ans=max(ans,dp[i]);
}
return ans;
}
};
线性dp:LeetCode674. 最长连续递增序列的更多相关文章
- [Swift]LeetCode674. 最长连续递增序列 | Longest Continuous Increasing Subsequence
Given an unsorted array of integers, find the length of longest continuous increasing subsequence (s ...
- LeetCode674. 最长连续递增序列
原题链接 1 class Solution: 2 def findLengthOfLCIS(self, nums: List[int]) -> int: 3 ans = begin = 0 4 ...
- Leetcode674.Longest Continuous Increasing Subsequence最长连续递增序列
给定一个未经排序的整数数组,找到最长且连续的的递增序列. 示例 1: 输入: [1,3,5,4,7] 输出: 3 解释: 最长连续递增序列是 [1,3,5], 长度为3. 尽管 [1,3,5,7] 也 ...
- LeetCode 最长连续递增序列
给定一个未经排序的整数数组,找到最长且连续的的递增序列. 示例 1: 输入: [1,3,5,4,7] 输出: 3 解释: 最长连续递增序列是 [1,3,5], 长度为3. 尽管 [1,3,5,7] 也 ...
- 【LeetCode动态规划#14】子序列系列题(最长递增子序列、最长连续递增序列、最长重复子数组、最长公共子序列)
最长递增子序列 力扣题目链接(opens new window) 给你一个整数数组 nums ,找到其中最长严格递增子序列的长度. 子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其 ...
- LeetCode 674. Longest Continuous Increasing Subsequence (最长连续递增序列)
Given an unsorted array of integers, find the length of longest continuous increasing subsequence. E ...
- [LeetCode] Longest Continuous Increasing Subsequence 最长连续递增序列
Given an unsorted array of integers, find the length of longest continuous increasing subsequence. E ...
- [LeetCode] 674. Longest Continuous Increasing Subsequence 最长连续递增序列
Given an unsorted array of integers, find the length of longest continuous increasing subsequence. E ...
- leetcode 674. 最长连续递增序列
1. 题目 给定一个未经排序的整数数组,找到最长且连续的的递增序列. 示例 1: 输入: [1,3,5,4,7] 输出: 3 解释: 最长连续递增序列是 [1,3,5], 长度为3. 尽管 [1,3, ...
- LeetCode 674. 最长连续递增序列(Longest Continuous Increasing Subsequence) 18
674. 最长连续递增序列 674. Longest Continuous Increasing Subsequence 题目描述 给定一个未经排序的整型数组,找到最长且连续的递增序列. Given ...
随机推荐
- 千万别忽视基础!十张图带你一步步理解Java内存结构!
作为一个Java程序员,在日常的开发中,不必像C/C++程序员那样,为每一个内存的分配而操心,JVM会替我们进行自动的内存分配和回收,方便我们开发.但是一旦发生内存泄漏或者内存溢出,如果对Java内存 ...
- 嵌入式工程师进阶,基于AM64x开发板的IPC多核开发案例分享
前 言 本文档主要说明AM64x基于IPC的多核开发方法.默认使用AM6442进行测试演示,AM6412测试步骤与之类似. 适用开发环境如下: Windows开发环境:Windows 7 64bit. ...
- AT_abc318_g 题解
因为是图上路径是否经过某个点的问题,所以考虑建出圆方树,然后根据圆方树的性质,\(a\) 到 \(c\) 存在经过 \(b\) 的路径等价于 \(a,c\) 在圆方树上的路径经过 \(b\) 或者 \ ...
- python3 webssh
简介 webssh 是 一个简单的 Web 应用程序,用作 ssh 客户端来连接到 ssh 服务器.它是用Python编写的,基于tornado.paramiko和xterm.js.下面简单搭建一个网 ...
- Django详细笔记
django 学习 特点 快速开发 安全性高 可伸缩性强 URL 组成部分 URL: 同意资源定位符 一个URL由以下几部分组成 scheme://host:port/path/?query-stri ...
- MySql常用日期时间查询
-- 某一天所在周的第一天: -- 我们知道国外的星期的第一天是从星期天开始的,所以DAYOFWEEK('2017-3-10')函数的第一天是星期天: SELECT CASE WHEN DAYNAME ...
- yb课堂 前端项目技术组件概述 《三十》
常用的技术组件的作用 学前必备基础:HTML.CSS.JavaScript.Vue基础知识 Vue:用于构建用户界面的渐进式JavaScript框架 什么是Cube-UI 基于Vue.js实现的精致移 ...
- Mac 每次都要执行source ~/.bash_profile 配置的环境变量才生效
自己在 ~/.bash_profile 中配置环境变量, 可是每次重启终端后配置的不生效.需要重新执行 : $source ~/.bash_profile 发现zsh加载的是 ~/.zshrc文件,而 ...
- 记录 中**信 ruoyi项目 部署全流程
零 本地环境改为线上环境 包括 1 后端的数据库连接地址 2 后端的文件存储本地地址 3 后端的文件存储ip地址 4 前端baseUrl 一 后端项目打包 双击package 二 mstsc 进入服务 ...
- Mysql-explain之Using temporary和Using filesort解决方案
第一条语句 explainselect * from tb_wm_shop where is_delete != 1 and is_authentication = 1 ORDER BY create ...