Kafka 如何保证消息消费的全局顺序性
哈喽大家好,我是咸鱼
今天我们继续来讲一讲 Kafka
当有消息被生产出来的时候,如果没有指定分区或者指定 key ,那么消费会按照【轮询】的方式均匀地分配到所有可用分区中,但不一定按照分区顺序来分配

我们知道,在 Kafka 中消费者可以订阅一个或多个主题,并被分配一个或多个分区

如果一个消费者消费了多个分区,某些场景下消费者需要顺序地消费消息,但消息并不是按照顺序分配给分区的,所以就不一定能够保证消息消费的全局顺序性
比如下图中 Msg0002 消息并不是在 Msg0001 消息之后的,就有可能导致消费者先把 Msg0002 消息给消费, Msg0001 消息才被消费

那么这种情况该怎么解决?如何尽可能地保证消息消费的全局顺序性?(即这些消息具有因果关系)要想消费消息 B 必须先消费消息 A
要注意的是,Kafka 的设计目标是提供高吞吐量和低延迟,而不是强制保证全局有序性
所以这篇文章探讨的是需要强调全局顺序性场景下的 Kafka 应用
单分区
最简单粗暴的方法,虽然 Kafka 不能保证全局消费顺序性,但是能够保证分区内的消息顺序性

所以我们可以只创建一个分区,并让消费者消费这个分区,这样就能够保证消费的消息是有序的
但是这样做大大降低了吞吐量和处理效率,容易使得性能出现瓶颈
基于 key
在 Kafka 中,基于 key 的消息分配策略是通过消息中的键(key)来确定消息发送到哪个分区
当生产者发送消息时,可以指定一个键(key),Kafka 使用这个键通过哈希算法来确定消息被发送到哪个分区

由于相同的 key 就发送到同一分区,这样就能够保证了消费的消息是有序的
然而,如果只有一个消费者消费相同 key 的消息,那么与单分区相比,基于 key 的消息分配策略不会提高吞吐量
因为即使相同 key 的消息在多个分区中,但同一消费者依然只能从一个分区中消费,这并不会增加整体的处理能力。
但如果有多个消费者消费相同 key 的消息,基于 key 的分区策略可以提高消费者并行消费的能力

因为这些消费者可以同时从不同分区中读取消息,从而增加整体的处理速度。这种情况下,基于 key 的消息分配可以提高整体吞吐量
最后总结一下:
Kafka 的设计目标是提供高吞吐量和低延迟,而不是强制保证全局有序性,所以Kafka使用多分区的概念,并且只保证单分区有序
如果想要实现消息的全局有序
单分区策略:
一个主题下只创建一个分区,一个消费者只消费一个分区,但这样做毫无并发性可言,极大降低系统性能
基于 key 的消息分配策略:
由于相同的 key 就发送到同一分区,这样就能够保证了消费的消息是有序的。然而,如果只有一个消费者消费相同 key 的消息,与前面单分区相比没有什么区别
Kafka 如何保证消息消费的全局顺序性的更多相关文章
- Kafka如何保证消息的顺序性
1. 问题 比如说我们建了一个 topic,有三个 partition.生产者在写的时候,其实可以指定一个 key,比如说我们指定了某个订单 id 作为 key,那么这个订单相关的数据,一定会被分发到 ...
- kafka如何保证消息得顺序性
1. 问题 比如说我们建了一个 topic,有三个 partition.生产者在写的时候,其实可以指定一个 key,比如说我们指定了某个订单 id 作为 key,那么这个订单相关的数据,一定会被分发到 ...
- Kafka如何保证消息不丢失不重复
首先需要思考下边几个问题: 消息丢失是什么造成的,从生产端和消费端两个角度来考虑 消息重复是什么造成的,从生产端和消费端两个角度来考虑 如何保证消息有序 如果保证消息不重不漏,损失的是什么 大概总结下 ...
- Kafka如何保证消息的可靠性传输
1.消费端弄丢了数据 唯一可能导致消费者弄丢数据的情况,就是说,你消费到了这个消息,然后消费者那边自动提交了 offset,让 Kafka 以为你已经消费好了这个消息,但其实你才刚准备处理这个消息,你 ...
- Kafka在高并发的情况下,如何避免消息丢失和消息重复?kafka消费怎么保证数据消费一次?数据的一致性和统一性?数据的完整性?
1.kafka在高并发的情况下,如何避免消息丢失和消息重复? 消息丢失解决方案: 首先对kafka进行限速, 其次启用重试机制,重试间隔时间设置长一些,最后Kafka设置acks=all,即需要相应的 ...
- 聊聊mq中消息消费的几种方式
mq系列文章 对mq了解不是很多的,可以看一下下面两篇文章: 聊聊mq的使用场景 聊聊业务系统中投递消息到mq的几种方式 聊聊消息消费的几种方式 如何确保消息至少消费一次 如何保证消息消费的幂等性 本 ...
- kafka分布式的情况下,如何保证消息的顺序?
作者:可期链接:https://www.zhihu.com/question/266390197/answer/772404605来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注 ...
- 【消息队列】kafka是如何保证消息不被重复消费的
一.kafka自带的消费机制 kafka有个offset的概念,当每个消息被写进去后,都有一个offset,代表他的序号,然后consumer消费该数据之后,隔一段时间,会把自己消费过的消息的offs ...
- 高可用保证消息绝对顺序消费的BROKER设计方案
转自: http://www.infoq.com/cn/articles/high-availability-broker-design?utm_source=tuicool&utm_medi ...
- kafka 保证消息被消费和消息只消费一次
1. 保证消息被消费 即使消息发送到了消息队列,消息也不会万无一失,还是会面临丢失的风险. 我们以 Kafka 为例,消息在Kafka 中是存储在本地磁盘上的, 为了减少消息存储对磁盘的随机 I/O, ...
随机推荐
- 《UNIX 传奇:历史与回忆》读后感
<UNIX 传奇:历史与回忆> 是 bwk(Brian W. Kernighan)2019 年的新作,回忆了 UNIX 在大半个世纪的风雨历程,是一本引人入胜的书籍.通过对 UNIX 操作 ...
- jmeter:json提取一个字段的多个值,用逗号分隔
目的:将接口响应结果中的一个字段的所有值同时提取,作为参数传给下个接口 1. 格式化接口响应结果 获取下图中所有object里面的EMP_UID 2. json提取 JSON Path express ...
- java与es8实战之二:实战前的准备工作
欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 本篇是<java与es8实战>系 ...
- 【路由器】Breed 介绍、刷入和使用
目录 介绍 文件说明 刷入 Breed 通过 Breed 刷机 其他功能 参考资料 介绍 Breed 是国内个人 hackpascal 开发的闭源 Bootloader,也被称为"不死鸟&q ...
- 魔术方法__getitem__
Python中的魔术方法_getitem_ python中有许多的魔术方法,下文主要对_getitem_()进行介绍.__ 在python中_getitem_(self, key):方法被称为魔法方法 ...
- 《SQL与数据库基础》10. 存储引擎
目录 存储引擎 MySQL体系结构 存储引擎简介 三种经典存储引擎 InnoDB 逻辑存储结构 MyISAM Memory 区别及特点 存储引擎选择 本文以 MySQL 为例 存储引擎 MySQL体系 ...
- tomcat远程部署
使用maven的插件对tomcat进行远程部署,大大降低了部署步骤,对于远程部署调试也有一定的帮助 要让maven对够进行远程部署,我们需要对tomcat进行配置,主要是配置tomcat-user.x ...
- 实现WebRTC群聊会议室(Mesh方案)
近期需要做一个类似会议室功能,但网络上大多数是一对一通信,故记录分享希望帮助到有用的人 WebRTC一对一聊天原理 关于WebRTC建立一对一聊天的模板网上很多,可参考以下博客:springboot+ ...
- 监听数组Array变化或Obj属性变化
工作中经常会遇到监听数组发生变化时执行相应的回调触发逻辑,客户应用场景中需要实现对象变量的动态监听,当变量发生变化时触发回调函数,实现事件发送等应用场景. 通常由以下两种方式实现需求 一. ...
- vue3.3.x setup 新实验性特性 defineModel 定义多个属性
由于有些业务组件需要定义多个响应式props,类似这种(比较懒,没上ts),在vue3.3.x以前,如果不用三方库,代码会变得很繁琐 <script setup> const props ...