洛谷P1043
[NOIP2003 普及组] 数字游戏
题目描述
丁丁最近沉迷于一个数字游戏之中。这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易。游戏是这样的,在你面前有一圈整数(一共 \(n\) 个),你要按顺序将其分为 \(m\) 个部分,各部分内的数字相加,相加所得的 \(m\) 个结果对 \(10\) 取模后再相乘,最终得到一个数 \(k\)。游戏的要求是使你所得的 \(k\) 最大或者最小。
例如,对于下面这圈数字(\(n=4\),\(m=2\)):

要求最小值时,\(((2-1)\bmod10)\times ((4+3)\bmod10)=1\times 7=7\),要求最大值时,为 \(((2+4+3)\bmod10)\times (-1\bmod10)=9\times 9=81\)。特别值得注意的是,无论是负数还是正数,对 \(10\) 取模的结果均为非负值。
丁丁请你编写程序帮他赢得这个游戏。
输入格式
输入文件第一行有两个整数,\(n\) (\(1\le n\le 50\)) 和 \(m\) (\(1\le m\le 9\))。以下 \(n\) 行每行有个整数,其绝对值 \(\le10^4\),按顺序给出圈中的数字,首尾相接。
输出格式
输出文件有 \(2\) 行,各包含 \(1\) 个非负整数。第 \(1\) 行是你程序得到的最小值,第 \(2\) 行是最大值。
样例 #1
样例输入 #1
4 2
4
3
-1
2
样例输出 #1
7
81
提示
【题目来源】
NOIP 2003 普及组第二题
事实证明,当你想不出状态方程时,记忆化搜索是一个不错的思路
// (ᗜ ‸ ᗜ)
// 去吧,鸭鸭,把希儿和AC都带回来!
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define endl '\n'
const int INF = 0x3f3f3f3f3f3f3f3f;
int n, m;
int s[105];
int pre[105];
int dp[10][105][105][2];
int minn = INF;
int maxx = -INF;
void dfs(int id, int ls, int rs, int res, int fr)
{
int sum = pre[rs] - pre[ls - 1];
sum = (sum%10+10)%10;
res = res * sum;
int i = rs + 1;
if (id == m)
{
maxx = max(res, maxx), minn = min(res, minn);
return;
}
int flag1 = 0,flag2 = 0;
if (dp[id][fr][rs][0] <= res)
{
flag1 = 1;
}
else
dp[id][fr][rs][0] = res;
if (dp[id][fr][rs][1] >= res){
flag2 = 1;
}
else
dp[id][fr][rs][1] = res;
if(flag1 && flag2) return;
if (id == m - 1)
{
dfs(id + 1, i, fr + n - 1, res, fr);
return;
}
for (int j = i; n + fr - j >= m - id; j++){
dfs(id + 1, i, j, res, fr);
}
}
inline int read()
{
int x = 0, f = 1;
char ch = getchar();
while (ch < '0' || ch > '9')
{
if (ch == '-')
f = -1;
ch = getchar();
}
while (ch >= '0' && ch <= '9')
{
x = x * 10 + ch - '0';
ch = getchar();
}
return x * f;
}
inline void print(int x)
{
if (x < 0)
{
putchar('-');
x = -x;
}
if (x > 9)
print(x / 10);
putchar(x % 10 + '0');
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cin >> n >> m;
for(int i = 1; i <= m; i++){
for(int j = 1; j <= 2 * n; j++){
for(int k = 1; k <= 2 * n; k++){
dp[i][j][k][0] = INF;
dp[i][j][k][1] = -INF;
}
}
}
for (int i = 1; i <= n; i++)
cin >> s[i], s[i + n] = s[i];
for (int i = 1; i <= 2 * n; i++)
pre[i] = pre[i - 1] + s[i];
if (m == 1)
{
dfs(1, 1, n, 1, 1);
}
else{
for (int i = 1; i <= n; i++)
for (int j = i; n + i - j >= m; j++)
dfs(1, i, j, 1, i);
}
cout << minn << endl;
cout << maxx << endl;
return 0;
}
洛谷P1043的更多相关文章
- 「区间DP」「洛谷P1043」数字游戏
「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...
- 洛谷 P1043 数字游戏(区间dp)
题目链接:https://www.luogu.com.cn/problem/P1043 这道题与石子合并很类似,都是把一个环强制改成一个链,然后在链上做区间dp 要初始化出1~2n的前缀和,方便在O( ...
- 洛谷——P1043 数字游戏
https://www.luogu.org/problem/show?pid=1043 题目描述 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要 ...
- 洛谷P1043 数字游戏
题目描述 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易.游戏是这样的,在你面前有一圈整数(一共n个),你要按顺序将其分 ...
- 洛谷P1043数字游戏
题目 区间DP,将\(maxn[i][j][k]\)表示为i到j区间内分为k个区间所得到的最大值,\(minn\)表示最小值. 然后可以得到状态转移方程: \[maxn[i][j][k]= max(m ...
- 洛谷 P1043 数字游戏
题目传送门 解题思路: 跟石子合并差不多,区间DP(环形),用f[i][j][s]表示从i到j分成s段所能获得的最大答案,枚举断点k,则f[i][j][s] = min(f[i][j][s],f[i] ...
- 洛谷 P1043 数字游戏 区间DP
题目描述 丁丁最近沉迷于一个数字游戏之中.这个游戏看似简单,但丁丁在研究了许多天之后却发觉原来在简单的规则下想要赢得这个游戏并不那么容易.游戏是这样的,在你面前有一圈整数(一共n个),你要按顺序将其分 ...
- 洛谷1640 bzoj1854游戏 匈牙利就是又短又快
bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...
- 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.
没有上司的舞会 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...
- 洛谷P1108 低价购买[DP | LIS方案数]
题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...
随机推荐
- 密码学—Vigenere破解Python程序
文章目录 概要 预备知识点学习 整体流程 技术名词解释 技术细节 小结 代码 概要 破解Vigenere需要Kasiski测试法与重合指数法的理论基础 具体知识点细节看下面这两篇文章 预备知识点学习 ...
- 为什么 AI 时代更应该 Learn in Public
TL;DR Learn in Public 强调将学习到的知识 分享到公共空间,相较于纯输入式的学习有诸多好处.AI 工具极大降低了信息检索.整理.概括的门槛,使得输入信息更容易,但对我们真正掌握知识 ...
- Python:当函数做为参数时的技巧
我们之前在<Python技法3: 匿名函数.回调函数.高阶函数>中提到,可以通过lambda表达式来为函数设置默认参数,从而修改函数的参数个数: import math def dista ...
- handsontable有显示值与实际值的下拉框cobbobox扩展
一.效果与使用 二.代码 /// <reference path="handsontable.full.min.js" /> //封闭在IIFE中 (Handsonta ...
- win10 使用idea 构建一个ssm的模板maven项目
一.创建一个maven项目 1.1建立一个module作为web项目 File->New->project 选择maven,默认jdk,下面的列表什么都不选,next->输入 ...
- AI实战 | 手把手带你打造校园生活助手
大家好,我是努力的小雨.最近,我开始将我的经验逐渐分享到B站,希望能够帮助大家通过扣子助手真正解决一些问题.最近有粉丝提出了一个需求,为了满足大家的期待,我已经制作了视频,详细介绍了这个助手的搭建思路 ...
- 这是一个基于threading可停止线程的有限容量有限并行度的python任务管理器
这是一个可停止线程的有限容量有限并行度的任务管理器 基于:GitHub - AlitaIcon/StopableThreadJob: 可停止线程任务管理器 Quick Start 基础调用与效果 im ...
- nodejs koa框架下载和导入excel
ac.js const service = require("../service/model.service"); const urlencode = require(" ...
- 通过Webpack搭建react
安装解析react的相关babel和插件 nmp i -D babel-loader @babel/core @babel/preset-react @babel/preset-env 进行loade ...
- ABC317题解报告
我直接从第三题开始讲了. T3 把数组 \(A\) 从大到小排序. 然后从前往后把前 \(q\) 个数加起来,然后判断这 \(q\) 个数的和与 \(d\) 的大小关系,如果大了就变成 \(d\). ...