小白也能看懂的 AUC 曲线详解
小白也能看懂的 AUC 曲线详解
简介
上篇文章 小白也能看懂的 ROC 曲线详解 介绍了 ROC 曲线。本文介绍 AUC。AUC 的全名为Area Under the ROC Curve,即 ROC 曲线下的面积,最大为 1。

根据 ROC 和 AUC 的关系,我们可以得到如下结论
- ROC 曲线接近左上角 ---> AUC 接近 1:模型预测准确率很高
- ROC 曲线略高于基准线 ---> AUC 略大于 0.5:模型预测准确率一般
- ROC 低于基准线 ---> AUC 小于 0.5:模型未达到最低标准,无法使用
二分类 AUC
由 AUC 名称可知,可以先计算 ROC 曲线,得到 TPR 和 FPR 的坐标后再分段计算面积即可得到 AUC

下面是对应的 Python 代码
def auc_from_roc(fpr, tpr):
"""
计算ROC面积
fpr: 从小到大排序的fpr坐标
tpr: 从小到大排序的tpr坐标
"""
area = 0
for i in range(len(fpr) - 1):
area += trapezoid_area(fpr[i], fpr[i + 1], tpr[i], tpr[i + 1])
return area
def trapezoid_area(x1, x2, y1, y2):
"""
计算梯形面积
x1, x2: 横坐标 (x1 <= x2)
y1, y2: 纵坐标 (y1 <= y2)
"""
base = x2 - x1
height_avg = (y1 + y2) / 2
return base * height_avg
也可以直接从真实标签和模型预测分数中计算 ROC,算法的时间复杂度为\(O(n\log n)\),参考文献 1 中的算法 2
# import numpy as np
def auc_binary(y_true, y_score, pos_label):
"""
y_true:真实标签
y_score:模型预测分数
pos_label:正样本标签,如“1”
"""
num_positive_examples = (y_true == pos_label).sum()
num_negtive_examples = len(y_true) - num_positive_examples
tp, fp, tp_prev, fp_prev, area = 0, 0, 0, 0, 0
score = -np.inf
for i in np.flip(np.argsort(y_score)):
if y_score[i] != score:
area += trapezoid_area(fp_prev, fp, tp_prev, tp)
score = y_score[i]
fp_prev = fp
tp_prev = tp
if y_true[i] == pos_label:
tp += 1
else:
fp += 1
area += trapezoid_area(fp_prev, fp, tp_prev, tp)
area /= num_positive_examples * num_negtive_examples
return area
多分类 AUC
现在考虑多分类的情况,假设类别数为\(C\)。
一种想法是将某一类别设为正样本类别,其余类别设为负样本类别,然后计算二分类下的 AUC。这种方法叫做一对多,即 One-Vs-Rest (OVR)。可以得到\(C\)个二分类的 AUC,然后计算平均数得到多分类的 AUC。
另一种想法是将某一类别设为正样本类别,另外一个类别(非自身)设为负样本类别计算二分类的 AUC。这种方法叫做一对一,即 One-Vs-One (OVO)。可以得到\(C(C-1)\)个二分类的 AUC,然后计算平均数。

当计算平均数时,可以考虑算数平均数(称为 macro),或者加权平均数(称为 weighted)。其中,加权为各类别的样本所占比例。因此,两两组合可以的得到四种计算多分类 AUC 的方法。值得一提的是,知名机器学习库 scikit-learn 的 roc_auc_score 函数 包含了上述四种方法。
- 一对多 + 算数平均数(OVR + macro)
- 一对多 + 加权平均数(OVR + weighted)
- 一对一 + 算数平均数(OVO + macro)
- 一对一 + 加权平均数(OVO + weighted)
一对多 + 算数平均数
多分类 AUC 的计算公式为
\]
其中\(\text{AUC}(c_i)\)是将类别\(c_i\)作为正样本类别(剩余作为负样本类别),计算的二分类 AUC。
# sklearn.metrics.roc_auc_score(y_true, y_score, average='macro', multi_class='ovr')
def auc_ovr_macro(y_true, y_score):
auc = 0
C = max(y_true) + 1
for i in range(C):
auc += auc_binary(y_true, y_score[:, i], pos_label=i)
return auc / C
一对多 + 加权平均数
多分类 AUC 的计算公式为
\]
其中,权重\(p(c_i)=\frac{\sum\mathbb{I}\{y=c_i\}}{n}\),即标签为\(c_i\)的样本所占比例,权重之和为 1。
# sklearn.metrics.roc_auc_score(y_true, y_score, average='weighted', multi_class='ovr')
def auc_ovr_weighted(y_true, y_score):
auc = 0
C = max(y_true) + 1
n = len(y_true)
for i in range(C):
p = sum(y_true == i) / n
auc += auc_binary(y_true, y_score[:, i], pos_label=i) * p
return auc
一对一 + 算数平均数
多分类 AUC 的计算公式为
\]
其中,\(\text{AUC}(c_i,c_j)=\frac{\text{AUC}(c_i|c_j)+\text{AUC}(c_j|c_i
)}{2}\)。即将\(c_i\)作为正样本类别、\(c_j\)作为负样本类别计算二分类\(\text{AUC}(c_i|c_j)\);然后将\(c_j\)作为正样本类别、\(c_i\)作为负样本类别计算二分类\(\text{AUC}(c_j|c_i)\)。\(\text{AUC}(c_i,c_j)\)为其计算的算数平均值。由于将\(c_i\)和\(c_j\)组合计算,共得到\(C(C-1)/2\) 个二分类 AUC。
# sklearn.metrics.roc_auc_score(y_true, y_score, average='macro', multi_class='ovo')
def auc_ovo_macro(y_true, y_score):
auc = 0
C = max(y_true) + 1
for i in range(C - 1):
i_index = np.where(y_true == i)[0]
for j in range(i + 1, C):
j_index = np.where(y_true == j)[0]
index = np.concatenate((i_index, j_index))
auc_i_j = auc_binary(y_true[index], y_score[index, i], pos_label=i)
auc_j_i = auc_binary(y_true[index], y_score[index, j], pos_label=j)
auc += (auc_i_j + auc_j_i) / 2
return auc * 2 / (C * (C - 1))
一对一 + 加权平均数
多分类 AUC 的计算公式为
\]
其中,权重\(p(c_i,c_j)=\frac{\sum\mathbb{I}\{y=c_i\}+\sum\mathbb{I}\{y=c_j\}}{(C-1)n}\),即标签为\(c_i\)和\(c_j\)的样本所占比例,分母中的系数\(C-1\)使得权重之和为 1。
# sklearn.metrics.roc_auc_score(y_true, y_score, average='weighted', multi_class='ovo')
def auc_ovo_weighted(y_true, y_score):
auc = 0
C = max(y_true) + 1
n = len(y_true)
for i in range(C - 1):
i_index = np.where(y_true == i)[0]
for j in range(i + 1, C):
j_index = np.where(y_true == j)[0]
index = np.concatenate((i_index, j_index))
p = len(index) / n / (C - 1)
auc_i_j = auc_binary(y_true[index], y_score[index, i], pos_label=i)
auc_j_i = auc_binary(y_true[index], y_score[index, j], pos_label=j)
auc += (auc_i_j + auc_j_i) / 2 * p
return auc
参考文献
- Fawcett, Tom. "An introduction to ROC analysis." Pattern recognition letters 27, no. 8 (2006): 861-874. https://www.researchgate.net/profile/Tom-Fawcett/publication/222511520_Introduction_to_ROC_analysis/links/5ac7844ca6fdcc8bfc7fa47e/Introduction-to-ROC-analysis.pdf
- Hand, David J., and Robert J. Till. "A simple generalisation of the area under the ROC curve for multiple class classification problems." Machine learning 45 (2001): 171-186. https://link.springer.com/content/pdf/10.1023/A:1010920819831.pdf
作者:PrimiHub-Kevin
小白也能看懂的 AUC 曲线详解的更多相关文章
- 小白也能看懂的插件化DroidPlugin原理(二)-- 反射机制和Hook入门
前言:在上一篇博文<小白也能看懂的插件化DroidPlugin原理(一)-- 动态代理>中详细介绍了 DroidPlugin 原理中涉及到的动态代理模式,看完上篇博文后你就会发现原来动态代 ...
- 小白也能看懂的插件化DroidPlugin原理(三)-- 如何拦截startActivity方法
前言:在前两篇文章中分别介绍了动态代理.反射机制和Hook机制,如果对这些还不太了解的童鞋建议先去参考一下前两篇文章.经过了前面两篇文章的铺垫,终于可以玩点真刀实弹的了,本篇将会通过 Hook 掉 s ...
- 小白也能看懂的Redis教学基础篇——朋友面试被Skiplist跳跃表拦住了
各位看官大大们,双节快乐 !!! 这是本系列博客的第二篇,主要讲的是Redis基础数据结构中ZSet(有序集合)底层实现之一的Skiplist跳跃表. 不知道那些是Redis基础数据结构的看官们,可以 ...
- 【vscode高级玩家】Visual Studio Code❤️安装教程(最新版🎉教程小白也能看懂!)
目录 如果您在浏览过程中发现文章内容有误,请点此链接查看该文章的完整纯净版 下载 Linux Mac OS 安装 运行安装程序 同意使用协议 选择附加任务 准备安装 开始安装 安装完成 如果您在浏览过 ...
- 小白也能看懂的Redis教学基础篇——做一个时间窗限流就是这么简单
不知道ZSet(有序集合)的看官们,可以翻阅我的上一篇文章: 小白也能看懂的REDIS教学基础篇--朋友面试被SKIPLIST跳跃表拦住了 书接上回,话说我朋友小A童鞋,终于面世通过加入了一家公司.这 ...
- 搭建分布式事务组件 seata 的Server 端和Client 端详解(小白都能看懂)
一,server 端的存储模式为:Server 端 存 储 模 式 (store-mode) 支 持 三 种 : file: ( 默 认 ) 单 机 模 式 , 全 局 事 务 会 话 信 息 内 存 ...
- 小白进阶之Scrapy第六篇Scrapy-Redis详解(转)
Scrapy-Redis 详解 通常我们在一个站站点进行采集的时候,如果是小站的话 我们使用scrapy本身就可以满足. 但是如果在面对一些比较大型的站点的时候,单个scrapy就显得力不从心了. 要 ...
- 小白也能看懂插件化DroidPlugin原理(一)-- 动态代理
前言:插件化在Android开发中的优点不言而喻,也有很多文章介绍插件化的优势,所以在此不再赘述.前一阵子在项目中用到 DroidPlugin 插件框架 ,近期准备投入生产环境时出现了一些小问题,所以 ...
- 小白也能看懂的插件化DroidPlugin原理(一)-- 动态代理
前言:插件化在Android开发中的优点不言而喻,也有很多文章介绍插件化的优势,所以在此不再赘述.前一阵子在项目中用到 DroidPlugin 插件框架 ,近期准备投入生产环境时出现了一些小问题,所以 ...
- 小白都能看懂的tcp三次握手
众所周知,TCP在建立连接时需要经过三次握手.许多初学者经常对这个过程感到混乱:SYN是干什么的,怎么一会儿是1一会儿是0?怎么既有大写的ACK又有小写的ack?为什么ACK在第二次握手才开始出现?初 ...
随机推荐
- Python日志模块:实战应用与最佳实践
本文详细解析了Python的logging模块,从基本介绍到实际应用和最佳实践.我们通过具体的代码示例解释了如何高效地使用这个模块进行日志记录,以及如何避免常见的陷阱,旨在帮助读者更好地掌握这个强大的 ...
- 02LED灯
目录 一.LED灯是什么 二.原理图 三.对LED进行操作 1.点亮第一个LED灯 2.LED双数点亮 3.LED流水灯 四.延迟函数的生成 一.LED灯是什么 LED是一个发光二极管,当一段为高电平 ...
- 洛谷 Luogu P1038 [NOIP2003 提高组] 神经网络
这题看着很吓人实则很简单.求输出层,正着求很麻烦,因为知不道谁连向这个点,所以可以反向建边,反着求. 拓扑+dfs,时间复杂度 \(\text{O(n + m)}\) #include <ios ...
- js: 获取Blob的值
this.ws.onmessage = async (msg) => { console.log('从服务端获取到了数据') // 从真正服务端发送过来的原始数据时在msg中的data字段 co ...
- Vue报错:Uncaught (in promise) NavigationDuplicated: Avoided redundant navigation to current location
错误原因,我猜测多半是版本问题 在router/index.js中添加如下代码 const originalPush = VueRouter.prototype.push VueRouter.prot ...
- fastjson 1.2.80 漏洞浅析及利用payload
0x01 说明 在fastjson的1.2.80版本中可以通过将依赖加入到java.lang.Exception 期望类的子类中,绕过checkAuto. 0x02 简析 { "@type& ...
- vxe-table中文文档
https://xuliangzhan_admin.gitee.io/vxe-table/#/table/grid/fullEdit
- C++ 核心指南之 C++ 哲学/基本理念(下)
C++ 核心指南(C++ Core Guidelines)是由 Bjarne Stroustrup.Herb Sutter 等顶尖 C+ 专家创建的一份 C++ 指南.规则及最佳实践.旨在帮助大家正确 ...
- nginx-http反向代理与负载均衡
前言 反向代理服务器位于用户与目标服务器之间,但是对于用户而言,反向代理服务器就相当于目标服务器,即用户直接访问反向代理服务器就可以获得目标服务器的资源.同时,用户不需要知道目标服务器的地址,也无须在 ...
- Unity的AssetPostprocessor之Model之动画:深入解析与实用案例 3
Unity AssetPostprocessor的Model的动画相关的函数修改实际应用 在Unity中,AssetPostprocessor是一个非常有用的工具,它可以在导入资源时自动执行一些操作. ...