POJ 1564 Sum It Up(DFS)
Sum It Up
Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u
Description
Given a specified total t and a list of n integers, find all distinct sums using numbers from the list that add up to t. For example, if t=4, n=6, and the list is [4,3,2,2,1,1], then there are four different sums that equal 4: 4,3+1,2+2, and 2+1+1.(A number can be used within a sum as many times as it appears in the list, and a single number counts as a sum.) Your job is to solve this problem in general.
Input
The input will contain one or more test cases, one per line. Each test case contains t, the total, followed by n, the number of integers in the list, followed by n integers x1,...,xn. If n=0 it signals the end of the input; otherwise, t will be a positive integer less than 1000, n will be an integer between 1 and 12(inclusive), and x1,...,xn will be positive integers less than 100. All numbers will be separated by exactly one space. The numbers in each list appear in nonincreasing order, and there may be repetitions.
Output
For each test case, first output a line containing 'Sums of', the total, and a colon. Then output each sum, one per line; if there are no sums, output the line 'NONE'. The numbers within each sum must appear in nonincreasing order. A number may be repeated in the sum as many times as it was repeated in the original list. The sums themselves must be sorted in decreasing order based on the numbers appearing in the sum. In other words, the sums must be sorted by their first number; sums with the same first number must be sorted by their second number; sums with the same first two numbers must be sorted by their third number; and so on. Within each test case, all sums must be distince; the same sum connot appear twice.
Sample Input
4 6 4 3 2 2 1 1 5 3 2 1 1 400 12 50 50 50 50 50 50 25 25 25 25 25 25 0 0
Sample Output
Sums of 4: 4 3+1 2+2 2+1+1 Sums of 5: NONE Sums of 400: 50+50+50+50+50+50+25+25+25+25 50+50+50+50+50+25+25+25+25+25+25
题目简单翻译:
给一个数n,然后给一个数m,接下来m个数,问有多少种情况使得若干个取自m个数中的数的和为n。没有则输出NONE
解题思路:
dfs,然后注意去重;
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n,m;
int t[];
int Ans_Array[];
bool cmp(const int &a,const int &b)
{
return a>b;
}
int Find;
void dfs(int now,int length,int Sum)
{
if(Sum==n)
{
Find=;
for(int i=;i<length;i++)
{
if(i) printf("+");
printf("%d",Ans_Array[i]);
}
printf("\n");
return;
}
for(int i=now+;i<m;i++)
{
if(t[i]<=n-Sum&&(i==now+||t[i]!=t[i-]))//这是去重和剪枝
{
Ans_Array[length]=t[i];
dfs(i,length+,Sum+t[i]);
}
}
}
void solve()
{
Find=;
for(int i=;i<m;i++)
{
if(t[i]<=n&&(i==||t[i]!=t[i-]))//这是去重和剪枝
{
Ans_Array[]=t[i];
dfs(i,,t[i]);
}
}
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF&&(n||m))
{
for(int i=;i<m;i++) scanf("%d",&t[i]);
sort(t,t+m,cmp);
printf("Sums of %d:\n",n);
solve();
if(!Find) puts("NONE");
}
return ;
}
POJ 1564 Sum It Up(DFS)的更多相关文章
- poj 1564 Sum It Up (DFS+ 去重+排序)
http://poj.org/problem?id=1564 该题运用DFS但是要注意去重,不能输出重复的答案 两种去重方式代码中有标出 第一种if(a[i]!=a[i-1])意思是如果这个数a[i] ...
- 【POJ - 3984】迷宫问题(dfs)
-->迷宫问题 Descriptions: 定义一个二维数组: int maze[5][5] = { 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0 ...
- POJ 1564(HDU 1258 ZOJ 1711) Sum It Up(DFS)
题目链接:http://poj.org/problem?id=1564 题目大意:给定一个整数t,和n个元素组成的集合.求能否用该集合中的元素和表示该整数,如果可以输出所有可行解.1<=n< ...
- Sum It Up---poj1564(dfs)
题目链接:http://poj.org/problem?id=1564 给出m个数,求出和为n的组合方式:并按从大到小的顺序输出: 简单的dfs但是看了代码才会: #include <cstdi ...
- 【POJ - 1321】棋盘问题 (dfs)
棋盘问题 Descriptions: 在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别.要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘 ...
- poj 3009 Curling 2.0 (dfs )
Curling 2.0 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11879 Accepted: 5028 Desc ...
- 【POJ - 1970】The Game(dfs)
-->The Game 直接中文 Descriptions: 判断五子棋棋局是否有胜者,有的话输出胜者的棋子类型,并且输出五个棋子中最左上的棋子坐标:没有胜者输出0.棋盘是这样的,如图 Samp ...
- poj 1564 Sum It Up【dfs+去重】
Sum It Up Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6682 Accepted: 3475 Descrip ...
- HDU 1258 Sum It Up (DFS)
Sum It Up Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total S ...
随机推荐
- win7自由调整CMD窗口
有如下命令,只需要改动相关参数即可以任意改变cmd窗口大小. mode con lines= mode con cols= color cls @cmd
- Java抽象类深入理解-----模板方法设计模式(Templete Method)
模板方法设计模式(Templete Method) 定义一个操作中的算法骨架,而将一些可变部分的实现延迟到子类中. 模板方法设计模式使得子类可以不改变一个算法的结构即可重新定义该算法某些特定的步骤. ...
- java.lang.NoClassDefFoundError: org/apache/commons/lang/StringUtils
java.lang.NoClassDefFoundError: org/apache/commons/lang/StringUtils Caused by: java.lang.ClassNotFou ...
- Windows 8.1 正式版 MSDN第二版 官方简体中文/英文版 (专业版/企业版)
说明:文件名cn开头的是简中版文件名en开头的是英文版文件名含x64的为64位版本文件名含x86的为32位版本文件名含enterprise的为企业版文件名含pro_vl的为专业批量授权版文件名不含en ...
- C51 函数/程序段的定位
在Keil C中可能需要指定某个函数或者某段程序链接后存放在程序区中的位置. 1. 如何指定某个函数在程序区中的位置. QUESTION How do I locate a C function at ...
- mysql命令行的基本用法
基础介绍:1.在linux下使用下列命令,请确认mysql的bin目录是否已经加入到PATH路径中,或者是已经进入到mysql安装路径下的bin目录查看PATHshell> echo $PATH ...
- EBS收单方/收货方
select rt.name, hcas.org_id from ar.hz_cust_acct_sites_all hcas, ar.hz_cust_site_uses_all hcsu, ra_t ...
- 解决IE6 IE7 JSON.stringify JSON 未定义问题
在项目中引入json2.js 官方http://www.json.org/ 源码地址:https://github.com/douglascrockford/JSON-js $.ajax({ url: ...
- [think in java]知识点学习
java中 全部数值都有正负号,不存在无符号整数. java中的基本类型存储在堆栈中. 其它对象存储在堆中. java确保数组会被初始化,并且不能在它的范围之外被訪问. 下面代码在c和c++中是合法的 ...
- MVC 错误处理1
实例1. /// <summary> /// 错误处理 /// 404 处理 /// </summary> protected void Application_Error(o ...