B

Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^

题目描写叙述

有n块地板排成一条直线,从左到右编号为1,2,3. . . n-1,n,每块地板上有一个权值w。如今要小B用这n块地板玩一个游戏。
小B能够选择随意一块地板作为起点,然后向右跳K次,每次最多能够跳5个格子(设起跳点地板编号为x,落地点为y,y-x <= 5)。每踩在一块地板上,小B的得分sum += wi
,小B每次仅仅能踩一块地板,開始时sum = 0。如今请你编写一个程序求最大的sum。

输入

多组输入.第一行输入两个整数n,k。(1<= n && n <= 100 ,1 <= k && k <= min(n,50))。
接下来n行,每行一个整数,依次表示Wi。(0  <= wi && wi <= 100)。

输出

每组数据输出一个整数,代表答案。

演示样例输入

10 1
0 0 0 10 1 2 3 4 5 6

演示样例输出

15
卡了两天了。。倒是一看就是dp可解,大体状态也表示好了,但死活没推出状态转移方程。看了一下标程,顿感自己萨比了。。
   dp[i][j] 代表跳j次能够到达i处(i为数组下标) 可得
   dp[i][j]=max(dp[i][j],dp[i-k][j-1])(k∈[1,min(i,5)]);注意边界。。
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <set>
#include <cmath>
#include <map>
#include <stack>
#define ll long long
using namespace std;
const int INF=0x3f3f3f3f;
int n,k,a[110],dp[110][55];
int main()
{
while(scanf("%d%d",&n,&k)!=EOF)
{
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
dp[i][0]=a[i];
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=min(i,5);j++)
{
for(int tk=1;tk<=k;tk++)
dp[i][tk]=max(dp[i][tk],dp[i-j][tk-1]+a[i]);
}
}
int ans=-INF;
for(int i=1;i<=n;i++)
ans=max(ans,dp[i][k]);
printf("%d\n",ans);
}
return 0;
}

   看了标程写的记忆化搜索,感觉记忆化也没那么神奇了,曾经从来没了解过QAQ。。我的理解是:找出状态数组,当你推不出来状态转移方程的时候,记忆化搜索也许不失为一种解决方式。前提是要有把搜索过程中的数据保存起来的思想,盲目的暴搜是不能解决这个问题的。。会T到没盆友的我深有体会。。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <set>
#include <cctype>
#include <cstring>
#include <string>
#include <vector>
#include <stack>
#include <queue>
using namespace std;
#define ll long long
const int maxn=110;
const int INF=0x3f3f3f3f;
int a[maxn],n,kk,tem,ans;
int dp[maxn][55];
int dfs(int s,int k)
{
if(dp[s][k]!=-1)
return dp[s][k];
dp[s][k]=a[s];
int tem=0;
if(k)
{
for(int i=1;i<=5&&i+s<n;i++)
tem=max(tem,dfs(i+s,k-1));
}
dp[s][k]+=tem;
return dp[s][k];
}
int main()
{
while(scanf("%d%d",&n,&kk)!=EOF)
{
memset(dp,-1,sizeof(dp));
for(int i=0;i<n;i++)
scanf("%d",a+i);
ans=-INF;
for(int i=0;i<n;i++)
{
ans=max(dfs(i,kk),ans);
}
printf("%d\n",ans);
}
return 0;
}
</pre><pre>

SDUT 2893-B(DP || 记忆化搜索)的更多相关文章

  1. 【bzoj5123】[Lydsy12月赛]线段树的匹配 树形dp+记忆化搜索

    题目描述 求一棵 $[1,n]$ 的线段树的最大匹配数目与方案数. $n\le 10^{18}$ 题解 树形dp+记忆化搜索 设 $f[l][r]$ 表示根节点为 $[l,r]$ 的线段树,匹配选择根 ...

  2. 【BZOJ】1415 [Noi2005]聪聪和可可 期望DP+记忆化搜索

    [题意]给定无向图,聪聪和可可各自位于一点,可可每单位时间随机向周围走一步或停留,聪聪每单位时间追两步(先走),问追到可可的期望时间.n<=1000. [算法]期望DP+记忆化搜索 [题解]首先 ...

  3. [题解](树形dp/记忆化搜索)luogu_P1040_加分二叉树

    树形dp/记忆化搜索 首先可以看出树形dp,因为第一个问题并不需要知道子树的样子, 然而第二个输出前序遍历,必须知道每个子树的根节点,需要在树形dp过程中记录,递归输出 那么如何求最大加分树——根据中 ...

  4. poj1664 dp记忆化搜索

    http://poj.org/problem?id=1664 Description 把M个相同的苹果放在N个相同的盘子里,同意有的盘子空着不放,问共同拥有多少种不同的分法?(用K表示)5.1.1和1 ...

  5. 状压DP+记忆化搜索 UVA 1252 Twenty Questions

    题目传送门 /* 题意:给出一系列的01字符串,问最少要问几个问题(列)能把它们区分出来 状态DP+记忆化搜索:dp[s1][s2]表示问题集合为s1.答案对错集合为s2时,还要问几次才能区分出来 若 ...

  6. ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2017)- K. Poor Ramzi -dp+记忆化搜索

    ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2017)- K. ...

  7. POJ 1088 DP=记忆化搜索

    话说DP=记忆化搜索这句话真不是虚的. 面对这道题目,题意很简单,但是DP的时候,方向分为四个,这个时候用递推就好难写了,你很难得到当前状态的前一个真实状态,这个时候记忆化搜索就派上用场啦! 通过对四 ...

  8. zoj 3644(dp + 记忆化搜索)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4834 思路:dp[i][j]表示当前节点在i,分数为j的路径条数,从 ...

  9. loj 1044(dp+记忆化搜索)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=26764 思路:dp[pos]表示0-pos这段字符串最少分割的回文 ...

随机推荐

  1. 删除 Windows Azure 网站上的标准服务器头

    编辑人员注释: 本文章由 Windows Azure 网站团队的项目经理 Erez Benari 撰写. 请求和响应中包含的 HTTP 头是Web 服务器和浏览器之间的 HTTP 通信过程的一部分.例 ...

  2. UIAlertView、UIActionSheet兼容iOS8

    链接地址:http://blog.csdn.net/nextstudio/article/details/39959895?utm_source=tuicool 1.前言 iOS8新增了UIAlert ...

  3. Android短信拦截和电话拦截

    MainActivity: package com.wyl.bctest; import android.support.v7.app.ActionBarActivity; import androi ...

  4. datetime.datetime.today()生成时间转换成unixtime

    首先要将时间中秒后面的.及其以后的部分去掉,否则时间转换函数 currenttime=str((datetime.datetime.today())).split('.',2)[0] str((dat ...

  5. JVM -- 类加载

    学习自周志明老师的<深入理解Java虚拟机>第二版 类的加载时机 如上图所示: 类从被加载到虚拟机内存中开始,直到卸载出内存为止,它的整个生命周期包括了: 加载.验证.准备.解析.初始化. ...

  6. 2014 HDU多校弟六场J题 【模拟斗地主】

    这是一道5Y的题目 有坑的地方我已在代码中注释好了 QAQ Ps:模拟题还是练的太少了,速度不够快诶 //#pragma comment(linker, "/STACK:16777216&q ...

  7. Verilog中的标点

    在Verilog中有时候会误用的上引号 1,define 中的 `define INITIAL  0 这个单引号用的是键盘左上角的那个单引号,其实就是一个小撇. 2,4'd0 这个 用的是才是叫真正的 ...

  8. LGPL与闭源程序

    最近一直在学习 Qt.Qt 有两个许可证:LGPL 和商业协议.这两个协议在现在的 Qt 版本中的代码是完全一致的(潜在含义是,Qt 的早期版本,商业版的 Qt 通常包含有一些开源版本所没有的库,比如 ...

  9. docker 学习笔记20:docker守护进程的配置与启动

    安装好docker后,需要启动docker守护进程.有多种启动方式. 一.服务的方式 因为docker守护进程被安装成服务.所以,可以通过服务的方式启停docker守护进程,包括查看状态. sudo ...

  10. myeclipse自动生成注释

    myeclipse自动生成注释 在使用Eclipse编写Java代码时,自动生成的注释信息都是按照预先设置好的格式生成的,例如其中author的属性值. 我们可以在Eclipse中进行设置自己希望显示 ...