Description

FJ has moved his K ( <= K <= ) milking machines out into the cow pastures among the C ( <= C <= ) cows. A set of paths of various lengths runs among the cows and the milking machines. The milking machine locations are named by ID numbers ..K; the cow locations are named by ID numbers K+..K+C. 

Each milking point can "process" at most M ( <= M <= ) cows each day. 

Write a program to find an assignment for each cow to some milking machine so that the distance the furthest-walking cow travels is minimized (and, of course, the milking machines are not overutilized). At least one legal assignment is possible for all input data sets. Cows can traverse several paths on the way to their milking machine. 

Input

* Line : A single line with three space-separated integers: K, C, and M. 

* Lines .. ...: Each of these K+C lines of K+C space-separated integers describes the distances between pairs of various entities. The input forms a symmetric matrix. Line  tells the distances from milking machine  to each of the other entities; line  tells the distances from machine  to each of the other entities, and so on. Distances of entities directly connected by a path are positive integers no larger than . Entities not directly connected by a path have a distance of . The distance from an entity to itself (i.e., all numbers on the diagonal) is also given as . To keep the input lines of reasonable length, when K+C > , a row is broken into successive lines of  numbers and a potentially shorter line to finish up a row. Each new row begins on its own line. 

Output

A single line with a single integer that is the minimum possible total distance for the furthest walking cow. 

Sample Input


Sample Output


Source

 
 

题意:K个产奶机,C头奶牛,每个产奶机最多可供M头奶牛使用;并告诉了产奶机、奶牛之间的两两距离Dij(0<=i,j<K+C)。

问题:如何安排使得在任何一头奶牛都有自己产奶机的条件下,奶牛到产奶机的最远距离最短?最短是多少?

1、首先floyd求出最短距离
2、二分答案, 重新建图,把多重匹配的点分裂成多个点来解二分图的最大匹配
3、看看二分的答案是否符合全部牛的匹配情况,然后继续二分
 
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
#define N 206
#define inf 1<<29
int k,c,m;
int mp[][];
int path[N][];
int match[];
int vis[];
void flyod(){
for(int L=;L<=k+c;L++){
for(int i=;i<=k+c;i++){
for(int j=;j<=k+c;j++){
if(mp[i][j]>mp[i][L]+mp[L][j]){
mp[i][j]=mp[i][L]+mp[L][j];
}
}
}
}
}
void changePath(int mid){
for(int i=;i<=c;i++){
for(int j=;j<=k;j++){
if(mp[k+i][j]<=mid){
for(int t=;t<=m;t++){
path[i][(j-)*m+t]=;
}
}
}
}
}
bool dfs(int x){
for(int i=;i<=k;i++){
for(int j=;j<=m;j++){
int u=(i-)*m+j;
if(path[x][u] && !vis[u]){
vis[u]=;
if(match[u]==- || dfs(match[u])){
match[u]=x;
return true;
}
}
}
}
return false;
}
bool judge(){ memset(match,-,sizeof(match));
for(int i=;i<=c;i++){
memset(vis,,sizeof(vis));
if(!dfs(i)){
return false;
}
}
return true; }
void solve(){
int L=,R=;
while(L<R){
int mid=(L+R)>>;
memset(path,,sizeof(path));
changePath(mid);
if(judge()){
R=mid;
}else{
L=mid+;
}
}
printf("%d\n",L);
}
int main()
{
while(scanf("%d%d%d",&k,&c,&m)==){ for(int i=;i<=k+c;i++){
for(int j=;j<=k+c;j++){
scanf("%d",&mp[i][j]);
if(mp[i][j]==){
mp[i][j]=inf;
}
}
} flyod();
solve();
}
return ;
}

 附上有注释的代码:

 #include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath> const int MAXK = + ;
const int MAXC = + ;
const int MAXM = + ;
const int INF = ; using namespace std; int k, c, m;
int map[MAXK+MAXC][MAXK+MAXC];
bool path[MAXC][MAXK*MAXM];
int match[MAXK*MAXM];
bool vst[MAXK*MAXM]; /* 把每个挤奶器点分裂成 m 个点,选边权 <=tmp 的边建立二分图 */
void buildGraph(int tmp)
{
memset(path, false, sizeof(path)); for (int i=; i<=c; i++)
for (int j=; j<=k; j++)
if (map[k+i][j] <= tmp)
{
for (int t=; t<=m; t++)
{
path[i][(j-)*m+t] = true;
}
}
} bool DFS(int i)
{
for (int j=; j<=k*m; j++)
{
if (path[i][j] && !vst[j])
{
vst[j] = true;
if (match[j] == - || DFS(match[j]))
{
match[j] = i;
return true;
}
}
}
return false;
} /* 针对该题,做了小小的修改,全部匹配返回 true, 否则返回 false */
bool maxMatch()
{
memset(match, -, sizeof(match));
for (int i=; i<=c; i++)
{
memset(vst, false, sizeof(vst));
if (!DFS(i))
return false;
}
return true;
} /* 二分答案,求二分图最大匹配 */
void solve()
{
int low = , high = *(k+c), mid;
while (low < high)
{
mid = (low + high)/;
buildGraph(mid);
maxMatch() == true ? high = mid : low = mid+;
}
printf("%d\n", low);
} void floyd()
{
int i, j, h, t = k+c;
for (h=; h<=t; h++)
for (i=; i<=t; i++)
for (j=; j<=t; j++)
if (map[i][j] > map[i][h]+map[h][j])
map[i][j] = map[i][h]+map[h][j];
} int main()
{
scanf("%d %d %d", &k, &c, &m);
for (int i=; i<=k+c; i++)
for (int j=; j<=k+c; j++)
{
scanf("%d", &map[i][j]);
if (map[i][j] == )
map[i][j] = INF;
}
floyd();
solve();
return ;
}

poj 2112 Optimal Milking (二分图匹配的多重匹配)的更多相关文章

  1. Poj 2112 Optimal Milking (多重匹配+传递闭包+二分)

    题目链接: Poj 2112 Optimal Milking 题目描述: 有k个挤奶机,c头牛,每台挤奶机每天最多可以给m头奶牛挤奶.挤奶机编号从1到k,奶牛编号从k+1到k+c,给出(k+c)*(k ...

  2. POJ 2112 Optimal Milking (二分+最短路径+网络流)

    POJ  2112 Optimal Milking (二分+最短路径+网络流) Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K To ...

  3. POJ 2112 Optimal Milking (二分 + floyd + 网络流)

    POJ 2112 Optimal Milking 链接:http://poj.org/problem?id=2112 题意:农场主John 将他的K(1≤K≤30)个挤奶器运到牧场,在那里有C(1≤C ...

  4. POJ 2112—— Optimal Milking——————【多重匹配、二分枚举答案、floyd预处理】

    Optimal Milking Time Limit:2000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u Sub ...

  5. POJ 2112 Optimal Milking(Floyd+多重匹配+二分枚举)

    题意:有K台挤奶机,C头奶牛,每个挤奶机每天只能为M头奶牛服务,下面给的K+C的矩阵,是形容相互之间的距离,求出来走最远的那头奶牛要走多远   输入数据: 第一行三个数 K, C, M  接下来是   ...

  6. POJ 2112 Optimal Milking (Floyd+二分+最大流)

    [题意]有K台挤奶机,C头奶牛,在奶牛和机器间有一组长度不同的路,每台机器每天最多能为M头奶牛挤奶.现在要寻找一个方案,安排每头奶牛到某台机器挤奶,使得C头奶牛中走过的路径长度的和的最大值最小. 挺好 ...

  7. POJ 2112: Optimal Milking【二分,网络流】

    题目大意:K台挤奶机,C个奶牛,每台挤奶器可以供M头牛使用,给出奶牛和和机器间的距离矩阵,求所有奶牛走最大距离的最小值 思路:最大距离的最小值,明显提示二分,将最小距离二分之后问题转化成为:K台挤奶机 ...

  8. POJ 2112 Optimal Milking (二分 + 最大流)

    题目大意: 在一个农场里面,有k个挤奶机,编号分别是 1..k,有c头奶牛,编号分别是k+1 .. k+c,每个挤奶机一天最让可以挤m头奶牛的奶,奶牛和挤奶机之间用邻接矩阵给出距离.求让所有奶牛都挤到 ...

  9. POJ 2112 Optimal Milking (Dinic + Floyd + 二分)

    Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 19456   Accepted: 6947 ...

随机推荐

  1. 公告:CSDN博客频道新功能正式上线!

    各位尊敬的CSDN用户: 你们好! 为了更好的服务于用户,CSDN博客最新推出如下功能: 1.取消开通博客3天才能发布博文的限制,博客开通之后即可发表博文 2.博客文章增加自定义摘要功能    在发表 ...

  2. MySQL数据库的双向加密方式

    如果你正在运行使用MySQL的Web应用程序,那么你把密码或者其他敏感信息保存在应用程序里的机会就很大.保护这些数据免受或者窥探者的获取 是一个令人关注的重要问题,因为您既不能让未经授权的人员使用或者 ...

  3. KindEditor简单的Demo使用

    一般的做网站后台都会用到富文本编辑器,网上也有很多优秀的富文本编辑器,这里是开源中国的富文本编辑器推荐:http://www.oschina.net/project/tag/172/wysiwyg 我 ...

  4. REST、SOA、SOAP、RPC、ICE、ESB、BPM知识汇总及理解

    转载自处blog.csdn.net/tantexian. SOA: 维基百科解释:SOA:面向服务的软件架构(Service Oriented Architecture),是一种计算机软件的设计模式, ...

  5. Eclipse 添加快捷方式

    1.在/usr/share/applications创建一个desktop文件,命名为eclipse.desktop 文件内容如下 [Desktop Entry]Name=EclipseType=Ap ...

  6. ftp nfs samba比较

    首先从字面意思上区分一下:1. FTP(文件传输协议)2. NFS(网络文件系统)3. samba 即smb(服务信息块)协议其中FTP 是TCP/IP协议栈所提供的一种子协议,该子协议具体可以实现在 ...

  7. Java 坦克小游戏心得

    原本是闲得慌无聊才去尝试做这个项目的,因为小时候玩小霸王的游戏机,那个时候经常玩这个游戏吧,特别是喜欢那种自定义地图的模式,觉得自由度非常不错.总之关于这个游戏,想说的一大堆.鉴于能有个空闲的时间,打 ...

  8. CSS选择器列表

    h1 类型选择器 选择元素的一个类型 .className 类选择器 以class属性的值来选择元素,可以在一个页面中出现多个 #idName ID选择器 以id属性的值来选择元素,在页面中是唯一的, ...

  9. Python时间戳和日期

    import time localtime=time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time())) prin ...

  10. Magento资源问题上CDN方案研究

    通过对Magento的了解,发现Magento的资源文件主要分布在media.js.skin三个文件夹里,media文件夹主要包括了系统自带编辑器WYSIWYG Editor 所有编辑器涉及到的资源( ...