Description

To enable homebuyers to estimate the cost of flood insurance, a real-estate firm provides clients with the elevation of each 10-meter by 10-meter square of land in regions where homes may be purchased. Water from rain, melting snow, and burst water mains will collect first in those squares with the lowest elevations, since water from squares of higher elevation will run downhill. For simplicity, we also assume that storm sewers enable water from high-elevation squares in valleys (completely enclosed by still higher elevation squares) to drain to lower elevation squares, and that water will not be absorbed by the land.  From weather data archives, we know the typical volume of water that collects in a region. As prospective homebuyers, we wish to know the elevation of the water after it has collected in low-lying squares, and also the percentage of the region's area that is completely submerged (that is, the percentage of 10-meter squares whose elevation is strictly less than the water level). You are to write the program that provides these results. 

Input

The input consists of a sequence of region descriptions. Each begins with a pair of integers, m and n, each less than 30, giving the dimensions of the rectangular region in 10-meter units. Immediately following are m lines of n integers giving the elevations of the squares in row-major order. Elevations are given in meters, with positive and negative numbers representing elevations above and below sea level, respectively. The final value in each region description is an integer that indicates the number of cubic meters of water that will collect in the region. A pair of zeroes follows the description of the last region.
 

Output

For each region, display the region number (1, 2, ...), the water level (in meters above or below sea level) and the percentage of the region's area under water, each on a separate line. The water level and percentage of the region's area under water are to be displayed accurate to two fractional digits. Follow the output for each region with a blank line.

Sample Input

3 3
25 37 45
51 12 34
94 83 27
10000
0 0

Sample Output

Region 1
Water level is 46.67 meters.
66.67 percent of the region is under water. 先对所有海拔排序,从小到大
然后,选取中间的海拔作为最终填满T1体积水后的海拔高度,判断其与T的关系,若T1>T,选取海拔较小的海拔,填满T2体积水。
直到得到两相邻海拔高度的T1,T2,使得(T1-T)*(T2-T)<0,则说明最后的水的高度在T1和T2之间。
考虑到数据个能比较多,采用二分法做该题。
但是,最后一直 结果错误,以下为采用二分法的错误代码
情况很多,细节也很多。
#include <iostream>
#include <algorithm>
#include <string.h>
#include <cmath>
#include <iomanip>
using namespace std;
const int maxn = *+;
int s[maxn], sum[maxn],m,n; //s为各个网格的海拔高度,有正有负 void dataout(double a1,double a2,double ss,double numm,double T)
{
//cout<<a1<<" "<<a2<< " "<<ss<< " "<<numm<<endl;
if(numm == )numm=;
double height = ss + (a1 - a2) / numm , per;
if(T == )per=;
else per = * numm / (m*n) ;
cout<<setiosflags(ios::fixed)<<setprecision();
cout << "Water level is " << height << " meters."<<endl;
cout << per << " percent of the region is under water."<<endl;
} void deal2(double T)
{
sort(s, s + m * n);
int a = , b = n * m - ,mid; //用二分法从中间向两边计算
while(){
mid = (a + b) / ;
if(sum[mid]!=)sum[mid]=;
for(int i = ;i < mid; i++){
if(s[i] < s [mid]) {
sum[mid] += (s[mid] - s[i]);
}
}
if (sum[mid] < T) a = mid;
else b = mid;
if(abs(a-b)<=)break;
}
if((sum[a-]-T)*(sum[a]-T) < &&a!=){
if(sum[a-] > T) dataout(T,sum[a],s[a],a-,T);
else dataout(T,sum[a-],s[a-],a,T);
}
else{
if(sum[a+] > T) dataout(T,sum[a],s[a],a+,T);
else dataout(T,sum[a+],s[a+],a,T);
}
} void deal1(double T)
{
sort(s, s + m * n);
int i;
bool flag = false;
sum[] = ;
for(i=;i<n*m;i++){
for(int j=;j<i;j++){
sum[i]+=(s[i] - s[j]);
/*cout<<"i "<<i<<" j "<<j<<endl;
cout<<sum[i]<<" = "<<s[i]<<" - "<<s[j]<<endl;*/
}
if(sum[i] >= T){
flag = true;
break;
}
}
/*cout<<i<<endl;
cout<<"sum[i-1] "<<sum[0]<<" sum[i] "<<sum[1]<<endl;*/
if(flag){
double height ,per;
if(T == ){
per=;
height = s[];
}
else {
per = * i / m / n;
height = s[i-] + (sum[i] - sum[i-]) / i;
}
cout<<setiosflags(ios::fixed)<<setprecision();
cout << "Water level is " <<height << " meters."<<endl;
cout << per<<" percent of the region is under water."<<endl;
}
else{
i--;
/*cout<<"false"<<endl;
cout<<"i "<<i<<endl;
cout<<" s[i-1] "<<s[i-1]<<" sum[i] "<<sum[i]<<endl;*/
double height ,per;
if(T == ){
per = ;
height = s[];
}
else {
per = ;
height = s[i] + (T - sum[i]) / (i + ) ;
}
cout<<setiosflags(ios::fixed)<<setprecision();
cout << "Water level is " <<height << " meters."<<endl;
cout << per<<" percent of the region is under water."<<endl;
}
} int main()
{
int times=;
double T;
while( cin >> n >> m ){
if(n == )break;
for(int i = ;i < n*m;i++)cin >> s[i];
cin >> T;
cout<< "Region " << ++times << endl;
memset(sum,,sizeof(sum));
if(m == &&n == ){
double height = T/ + s[],per;
if(T == ) per = ;
else per = ;
cout << setiosflags(ios::fixed) << setprecision();
cout << "Water level is " <<height << " meters."<<endl;
cout << per << " percent of the region is under water."<<endl;
}
else if(m*n<)deal1(T/);
else deal2(T / );
}
return ;
}
实在不知错在哪,就不用二分法试试。
一次AC
果然还是我想太多了,不用二分法也并没有超时。
#include <iostream>
#include <algorithm>
#include <iomanip>
using namespace std;
const int maxn = *+;
int s[maxn],m,n; //s为各个网格的海拔高度,有正有负 void dataout(double a1,double a2,double ss,double numm,double T)
{
if(numm == )numm=;
double height = ss + (a1 - a2) / numm , per = * numm / (m*n);
cout<<setiosflags(ios::fixed)<<setprecision();
cout << "Water level is " << height << " meters."<<endl;
cout << per << " percent of the region is under water."<<endl;
} void deal(double T)
{ int a = ,t1 = ,t2 = ,i;
for(i=;i<n*m;i++){
t2 = t1;
t1 = ;
for(int j=;j<i;j++)t1+=(s[i] - s[j]);
if(t2< T&& (t1 > T||t1 == T))break; }
if(i == n*m) dataout(T,t1,s[i-],i,T);
else dataout(T,t2,s[i-],i,T);
} int main()
{
int times=;
double T;
while( cin >> n >> m ){
if(n == )break;
for(int i = ;i < n*m;i++)cin >> s[i];
cin >> T;
cout<< "Region " << ++times << endl;
sort(s, s + m * n);
if(T == ){
double height = s[], per = ;
cout << setiosflags(ios::fixed) << setprecision();
cout << "Water level is " <<height << " meters."<<endl;
cout << per << " percent of the region is under water."<<endl;
}
else deal( T / );
}
return ;
}



uvA Flooded!的更多相关文章

  1. UVA 815 Flooded!

    题意:来自:https://blog.csdn.net/lecholin/article/details/70186673 思路: ①数组存每个网格的高度,然后排序,做题时想象为上面的柱状图. ②注意 ...

  2. 【每日一题】Flooded! UVA - 815 模拟阅读格式题

    https://cn.vjudge.net/problem/UVA-815 题意:给你一个矩阵,每个格子的数代表一个海拔并且每个格子的面积100平方米.给你整个区域的降水量(立方米),问降水量(米). ...

  3. 【习题 4-9 UVA - 815】Flooded!

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 题目很迷啊. 不会出现盆地? 可以理解为一条线. 从左往右高度上升的一座座山. 然后V升的水从最左边的山倒进去. 然后问你最后海拔多 ...

  4. Flooded! UVA - 815 (sort排序)

    错了好多遍,不知道为啥出错,如果有大神发现,请求指点!!! 附错误代码(错的不知道怎么回事): #include<iostream> #include<cstdio> #inc ...

  5. uva 1354 Mobile Computing ——yhx

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABGcAAANuCAYAAAC7f2QuAAAgAElEQVR4nOy9XUhjWbo3vu72RRgkF5

  6. UVA 10564 Paths through the Hourglass[DP 打印]

    UVA - 10564 Paths through the Hourglass 题意: 要求从第一层走到最下面一层,只能往左下或右下走 问有多少条路径之和刚好等于S? 如果有的话,输出字典序最小的路径 ...

  7. UVA 11404 Palindromic Subsequence[DP LCS 打印]

    UVA - 11404 Palindromic Subsequence 题意:一个字符串,删去0个或多个字符,输出字典序最小且最长的回文字符串 不要求路径区间DP都可以做 然而要字典序最小 倒过来求L ...

  8. UVA&&POJ离散概率与数学期望入门练习[4]

    POJ3869 Headshot 题意:给出左轮手枪的子弹序列,打了一枪没子弹,要使下一枪也没子弹概率最大应该rotate还是shoot 条件概率,|00|/(|00|+|01|)和|0|/n谁大的问 ...

  9. UVA计数方法练习[3]

    UVA - 11538 Chess Queen 题意:n*m放置两个互相攻击的后的方案数 分开讨论行 列 两条对角线 一个求和式 可以化简后计算 // // main.cpp // uva11538 ...

随机推荐

  1. 虚函数—c++的灵魂

    <note_content />   虚函数 C++中的虚函数的作用主要是实现了多态的机制.关于多态,简而言之就是用父类型别的指针指向其子类的实例,然后通过父类的指针调用实际子类的成员函数 ...

  2. oracle RAC调整数据文件大小并移动表到指定的表空间

    一.Oracle RAC 调整表空间数据文件大小 1.先查找出表空间对应的数据文件路径: select file_name,tablespace_name from dba_data_files ; ...

  3. 关于Repeater中绑定的控件不触发ItemCommand事件

    今天遇到 在repeater 中使用一个button,点击button然后跳转另外一个页面. html. <asp:Repeater ID="repeater" runat= ...

  4. 用python随机生成数据,再插入到postgresql中

    用python随机生成学生姓名,三科成绩和班级数据,再插入到postgresql中. 模块用psycopg2 random import random import psycopg2 fname=[' ...

  5. iOS学习之界面间传值

    /** *  界面间传值步骤 1.界面传值第一种场场景:从前往后传值. 秘诀:属性传值.(葵花宝典). 招式:(1).在后一个界面定义属性,属性的类型和传出数据类型一致. (2).在进入下一界面之前, ...

  6. hdu 5305Friends

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5305 Problem Description There are n people and m pai ...

  7. LoadRunner利用ODBC编写MySql脚本

    最近做了几周的LoadRunner测试,有一些心得,记录下来,以便以后查找. LoadRunner测试数据库是模拟客户端去连接数据库服务器,因此,需要协议(或者说驱动的支持).LoadRunner本身 ...

  8. C语言日期时间标准库

    用思维导图整理: 代码: #include <stdio.h> #include <time.h> #include <string.h> int main() { ...

  9. PowerShell常用的属性

    get-location | get-member  -membertype  property -------获取对象的属性---------- 获取对象特定的成员, 湖区.Net Framwork ...

  10. Windows搭建SMTP邮件服务器

    From:http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/e4cf06f5-9a36-474b-b ...