C-01背包问题
【声明】:非常感谢http://blog.sina.com.cn/s/blog_6dcd26b301013810.html,给我带来的帮助。
看这个图片表示的意思:
w[i]表示第i件物品的容积 ,p[i]第i件物品的价值。
c[i][j] 表示 第i件物品装入容积为j 的空间中的最高价值。 其中i是物品编号,j代表当前背包的容积。
非常重要的状态转移方程:
C[i][j] = max(C[i-1][j],C[i-1][j-w[i]]+p[i])
C[i-1][j]表示放第i-1件物品,背包容量为j的总价值。
C[i-1][j-w[i]]表示存放第i-1件物品,背包容量为 j-w[i] 的总价值;再加上当前第i件物品的价值
【也就是说在选择是不是要放一件物品时,就看看不放该物件的价值 与 放了该物件的总价值 哪个更大一点的问题。】
int knapsack(int m,int n)//总容量,物品数量
{
int i,j,w[],p[];//每件物品的容量个价值
for(i=;i<n+;i++)
scanf("\n%d,%d",&w[i],&p[i]); for(i=;i<;i++)
for(j=;j<;j++)
c[i][j]=; for(i=;i<n+;i++)//数量
for(j=;j<m+;j++)
{
if(w[i]<=j){//j表示当前容量,当前容量如果小于该件物品的容量,
//也就是该件物品放不进去背包
if(p[i]+c[i-][j-w[i]]>c[i-][j])
c[i][j]=p[i]+c[i-][j-w[i]];
else
c[i][j]=c[i-][j];
}else c[i][j]=c[i-][j];
}
return(c[n][m]);
}
01
由于使用一维数组解01背包会被多次用到,完全背包的一种优化实现方式也是使用一维数组,所以我们有必要理解这种方法。
如果只使用一维数组f[0…v],我们要达到的效果是:
第i次循环结束后f[v]中所表示的就是使用二维数组时的f[i][v],即前i个物体面对容量v时的最大价值。
我们知道f[v]是由两个状态得来的,f[i-1][v]和f[i-1][v-c[i]],使用一维数组时,当第i次循环之前时,f[v]实际上就是f[i-1][v],那么怎么得到第二个子问题(f[i-1][v-c[i]])的值呢?事实上,如果在每次循环中我们以v=V…0的顺序推f[v]时,就能保证f[v-c[i]]存储的是f[i-1][v-c[i]]的状态。状态转移方程为:
v = V...0; f(v) = max{ f(v), f(v-c[i])+w[i] }
我们可以与二维数组的状态转移方程对比一下
f(i,v) = max{ f(i-1,v), f(i-1,v-c[i])+w[i] }
还是看上图:如果按照v=0-V的顺序的话,第一件物品存入包中和上图一样,当存入第二件物品的时候,v= 4时,价值为5。但是没有办法准确知道f[i-1][v-c[i]](即f[v-c[i])。【由于是一维数组,数据会被覆盖】
但是,如果按照v = V--0的顺序。存入第一件物品的时候,和上图是一样的,此时f[10] = ...=f[5] = 4,开始存放第二件物品的时候,v =V = 10;f(v) = max{ f(v), f(v-c[i])+w[i] }(即f[10] = max{f[10],f[10-c[2]+w[2]} = max{f[10],f[6]+w[2] = max{4,4+5} = 9);v = 9……以此类推就可以得出上图中的第二行。
【再想不明白,自己按照上图执行一遍即可。】
程序代码:
#include<stdio.h>
#include<stdlib.h>
#define MAXN 100+10 int f[MAXN];
int w[MAXN],c[MAXN]; int main()
{
int N,V;
int i=,j;
scanf("%d%d",&V,&N);
for(i = ;i<N;i++)
{
scanf("%d%d",&c[i],&w[i]);
}
memset(f,,sizeof(f));
for(i = ;i<N;i++)
for(j = V;j>=c[i];j--)
{
f[j] = f[j]>(f[j-c[i]]+w[i]) ? f[j]: f[j-c[i]]+w[i];
} printf("max value si %d\n",f[V]);
return ;
}
这样一来就全部解决了问题了………………^__^
C-01背包问题的更多相关文章
- 01背包问题:POJ3624
背包问题是动态规划中的经典问题,而01背包问题是最基本的背包问题,也是最需要深刻理解的,否则何谈复杂的背包问题. POJ3624是一道纯粹的01背包问题,在此,加入新的要求:输出放入物品的方案. 我们 ...
- 01背包问题:Charm Bracelet (POJ 3624)(外加一个常数的优化)
Charm Bracelet POJ 3624 就是一道典型的01背包问题: #include<iostream> #include<stdio.h> #include& ...
- HDU 1864最大报销额 01背包问题
B - 最大报销额 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit St ...
- HDOJ 2546饭卡(01背包问题)
http://acm.hdu.edu.cn/showproblem.php?pid=2546 Problem Description 电子科大本部食堂的饭卡有一种很诡异的设计,即在购买之前判断余额.如 ...
- YTU 2335: 0-1背包问题
2335: 0-1背包问题 时间限制: 1 Sec 内存限制: 128 MB 提交: 15 解决: 12 题目描述 试设计一个用回溯法搜索子集空间树的函数.该函数的参数包括结点可行性判定函数和上界 ...
- c语言数据结构:01背包问题-------动态规划
两天的时间都在学习动态规划:小作业(01背包问题:) 数据结构老师布置的这个小作业还真是让人伤头脑,自己实在想不出来了便去网上寻找讲解,看到一篇不错的文章: http://www.cnblogs.co ...
- HDU2602 (0-1背包问题)
N - 01背包 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Descri ...
- poj3624 简单的01背包问题
问题描述: 总共有N种宝石供挑选,宝石i的重量为Wi,吸引力为Di,只可以用一次.Bessie最多可负担的宝石手镯总重量为M.给出N,M,Wi,Di,求M. 非常标准的01背包问题.使用了优化的一维数 ...
- hdu5188 加限制的01背包问题
http://acm.hdu.edu.cn/showproblem.php? pid=5188 Problem Description As one of the most powerful brus ...
- 01背包问题(Java实现)
关于背包问题,百度文库上有崔添翼大神的<背包九讲>,不明的请移步查看.这里仅介绍最基本的01背包问题的实现. public class Knapsack { private final i ...
随机推荐
- js推断指定函数、变量是否存在的方法
//推断是否存在指定函数 function isExitsFunction(funcName) { try { if (typeof (eval(funcName)) == "functio ...
- HDU 1711 Number Sequence KMP
题目地址: http://acm.hdu.edu.cn/showproblem.php?pid=1711 AC代码: #include <iostream> #include <cs ...
- asp.net中 服务器控件中onselectedindexchanged 没有反应的解决方案
最近发现项目中一个BUG就是 DropDownList 中的onselectedindexchanged 没有反应 AutoPostBack="true"和页面中的<%@ P ...
- 循环训练(for的嵌套、while、do while)以及异常处理
For的嵌套 练习一: 练习二: 练习三: 练习四: while的使用方法: 示例一: 示例二: 示例三: while的练习题: do while的使用示例: 异常处理示例: try catch ...
- 初始Android-配置环境
最近闲来无事自学了一下Android,今天没事想整理一下思绪,简单的介绍一下我自己对环境配置的认识,仅供参考,欢迎提出意见. 1.首先打开Eclipse,然后安装ADT,准备好ADTjar包或者zip ...
- 修改项目工程名 iOS
结合这两篇原文: http://www.cocoachina.com/ios/20150104/10824.html http://jingyan.baidu.com/article/0964eca2 ...
- 【Linux命令】配置ssh远程连接步骤
安装ssh: sudo apt-get update sudo apt-get install openssh-server 查看ssh服务器是否启动: sudo ps -e | grep ssh 查 ...
- dlib库学习之一
dlib库学习之一 1.介绍 跨平台 C++ 通用库 Dlib 发布 ,带来了一些新特性,包括概率 CKY 解析器,使用批量同步并行计算模型来创建应用的工具,新增两个聚合算法:中国低语 (Chines ...
- Python网络编程——编写一个简单的回显客户端/服务器应用
今天将python中socket模块的基本API学习完后,照着书上的实例编写一个套接字服务器和客户端.采用python3.5版本,在注释中会标明python2和python3的不同之处. 1.代码 ( ...
- MFC消息顺序
1.AfxWndProc() 该函数负责接收消息,找到消息所属的CWnd对象,然后调用AfxCallWndProc 2.AfxCallWndProc() 该函数负责保存消息(保存的内容主要 ...