kaggle之手写体识别
数据预览
首先载入数据集
import pandas as pd
import numpy as np
train = pd.read_csv('/Users/frank/Documents/workspace/kaggle/dataset/digit_recognizer/train.csv')
test = pd.read_csv('/Users/frank/Documents/workspace/kaggle/dataset/digit_recognizer/test.csv')
print train.head()
print test.head()
label pixel0 pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 \
0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0
3 4 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0
pixel8 ... pixel774 pixel775 pixel776 pixel777 pixel778 \
0 0 ... 0 0 0 0 0
1 0 ... 0 0 0 0 0
2 0 ... 0 0 0 0 0
3 0 ... 0 0 0 0 0
4 0 ... 0 0 0 0 0
pixel779 pixel780 pixel781 pixel782 pixel783
0 0 0 0 0 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
[5 rows x 785 columns]
pixel0 pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 pixel8 \
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0
pixel9 ... pixel774 pixel775 pixel776 pixel777 pixel778 \
0 0 ... 0 0 0 0 0
1 0 ... 0 0 0 0 0
2 0 ... 0 0 0 0 0
3 0 ... 0 0 0 0 0
4 0 ... 0 0 0 0 0
pixel779 pixel780 pixel781 pixel782 pixel783
0 0 0 0 0 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
[5 rows x 784 columns]
分离训练数据和标签:
train_data = train.values[:,1:]
label = train.ix[:,0]
test_data = test.values
降维
from sklearn.decomposition import PCA
from sklearn.svm import SVC
pca = PCA(n_components=0.8, whiten=True)
# pca.fit(train_data)
train_data = pca.fit_transform(train_data)
# pca.fit(test_data)
test_data = pca.transform(test_data)
SVM训练
print('使用SVM进行训练...')
svc = SVC(kernel='rbf',C=2)
svc.fit(train_data, label)
print('训练结束.')
使用SVM进行训练...
训练结束.
print('对测试集进行预测...')
predict = svc.predict(test_data)
print('预测结束.')
对测试集进行预测...
预测结束.
保存结果:
pd.DataFrame(
{"ImageId": range(1, len(predict) + 1), "Label": predict}
).to_csv('output.csv', index=False, header=True)
print 'done.'
done.
kaggle之手写体识别的更多相关文章
- pytorch实现kaggle猫狗识别
参考:https://blog.csdn.net/weixin_37813036/article/details/90718310 kaggle是一个为开发商和数据科学家提供举办机器学习竞赛.托管数据 ...
- MXNET手写体识别的例子
安装完MXNet之后,运行了官网的手写体识别的例子,这个相当于深度学习的Hello world了吧.. http://mxnet.io/tutorials/python/mnist.html 运行的过 ...
- libsvm Minist Hog 手写体识别
统计手写数字集的HOG特征 转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ 这篇文章是模式识别的小作业,利用sv ...
- Python3实现简单可学习的手写体识别
0.目录 1.前言 2.通过pymssql与数据库的交互 3.通过pyqt与界面的交互 4.UI与数据库的交互 5.最后的main主函数 1.前言 版本:Python3.6.1 + PyQt5 + S ...
- R︱Softmax Regression建模 (MNIST 手写体识别和文档多分类应用)
本文转载自经管之家论坛, R语言中的Softmax Regression建模 (MNIST 手写体识别和文档多分类应用) R中的softmaxreg包,发自2016-09-09,链接:https:// ...
- keras入门--Mnist手写体识别
介绍如何使用keras搭建一个多层感知机实现手写体识别及搭建一个神经网络最小的必备知识 import keras # 导入keras dir(keras) # 查看keras常用的模块 ['Input ...
- 使用KNN算法手写体识别
#!/usr/bin/python #coding:utf-8 import numpy as np import operator import matplotlib import matplotl ...
- 深度学习-mnist手写体识别
mnist手写体识别 Mnist数据集可以从官网下载,网址: http://yann.lecun.com/exdb/mnist/ 下载下来的数据集被分成两部分:55000行的训练数据集(mnist.t ...
- 入门项目数字手写体识别:使用Keras完成CNN模型搭建(重要)
摘要: 本文是通过Keras实现深度学习入门项目——数字手写体识别,整个流程介绍比较详细,适合初学者上手实践. 对于图像分类任务而言,卷积神经网络(CNN)是目前最优的网络结构,没有之一.在面部识别. ...
随机推荐
- 从反编译的角度去观察C#6.0
1. 自动属性初始化 (Initializers for auto-properties) 1.1 C#6.0 之前的写法 public class FirstExperience { private ...
- 改造百度UMeditor(UEditor-min)富文本编辑器的图片上传功能
最近项目需要新增一个发布文章的模块,用的是百度的Ueditor富文本编辑器. 公司用的是阿里云的图片服务器,需要直接把文章中图片上传到服务器上,但是这个编辑器的上传图片是直接上传到Tomcat的根目录 ...
- BZOJ 1003 物流运输 (动态规划 SPFA 最短路)
1003: [ZJOI2006]物流运输 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 5590 Solved: 2293 [Submit][Stat ...
- hdu 1232畅通工程
Problem Description 某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇.省政府"畅通工程"的目标是使全省任何两个城镇间都可以实现交通 ...
- C++类中的静态成员变量与静态成员函数
最近一直看c++相关的项目,但总是会被c++类中的静态成员变量与静态成员函数的理解感觉很是模糊,不明白为什么类中要是用静态成员变量.于是在网上搜集了一些资料,自己再稍微总结下. 静态成员的概念: 静态 ...
- android布局常用属性记录
android布局常用属性记录 http://blog.csdn.net/xn4545945/article/details/7717086这里有一部分别人总结的其余的: align:对齐 par ...
- Oracle11g R2学习系列 之六数据库链接,快照及序列
Create public database link link_name Connect to user identified by password using 'DBName' 为'DBName ...
- jQuery封装的表单验证,模仿网易或者腾讯登录的风格
模仿网易邮箱做了一个登录表单验证,不太好,请指教 上代码 <form action="" name="" id="form1"> ...
- 保存BASE64编码图片
1.前端上传用户图片时,一些K数较小图片,头像图标等 .以bass64编码后的字符串传到服务器. 2.服务器接收并保留到本地. // 页面上点击保存 $.post('/imgupload/save', ...
- 移动WEB开发常用技巧
Meta设置 <!-- 设备宽度.禁止缩放 --> <meta name="viewport" content="width=device-width, ...