POJ3176——Cow Bowling(动态规划)
Cow Bowling
Description
The cows don't use actual bowling balls when they go bowling. They each take a number (in the range 0..99), though, and line up in a standard bowling-pin-like triangle like this:
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
Then the other cows traverse the triangle starting from its tip and moving "down" to one of the two diagonally adjacent cows until the "bottom" row is reached. The cow's score is the sum of the numbers of the cows visited along the way. The cow with the highest score wins that frame.
Given a triangle with N (1 <= N <= 350) rows, determine the highest possible sum achievable.
Input
Line 1: A single integer, N
Lines 2..N+1: Line i+1 contains i space-separated integers that represent row i of the triangle.
Output
Line 1: The largest sum achievable using the traversal rules
Sample Input
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
Sample Output
30
题目大意:
输入一个n层的三角形,第i层有i个数,求从第1层到第n层的所有路线中,权值之和最大的路线。
规定:第i层的某个数只能连线走到第i+1层中与它位置相邻的两个数中的一个。
解题思路:
动态规划。
dp[i][j]=max(dp[i-1][j],dp[i-1][j-1]+data[i][j]
因为dp数组的值只与上一行有关,用滚动数组优化了一下。(直接开成一维的了。。。)
Code(Mem:1184K Tim:32MS):
/*************************************************************************
> File Name: poj3176.cpp
> Author: Enumz
> Mail: 369372123@qq.com
> Created Time: 2014年10月21日 星期二 19时38分18秒
************************************************************************/
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<list>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<algorithm>
#define MAXN 351
using namespace std;
int way[MAXN][MAXN],dp[MAXN][MAXN];
int N;
void Input()
{
cin>>N;
for (int i=;i<=N;i++)
for (int j=;j<=i;j++)
scanf("%d",&way[i][j]);
}
void Solve()
{
memset(dp,,sizeof(dp));
for (int i=;i<=N;i++)
for (int j=;j<=i;j++)
dp[i][j]=max(dp[i-][j],dp[i-][j-])+way[i][j];
}
void Output()
{
int ret=dp[N][];
for (int i=;i<=N;i++)
if (ret<dp[N][i]) ret=dp[N][i];
cout<<ret<<endl;
}
int main()
{
Input();
Solve();
Output();
return ;
}
Code(滚动数组优化 Mem:224K Tim:47MS):
/*************************************************************************
> File Name: poj3176.cpp
> Author: Enumz
> Mail: 369372123@qq.com
> Created Time: 2014年10月21日 星期二 19时38分18秒
************************************************************************/
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<list>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<algorithm>
#define MAXN 351
using namespace std;
int way[MAXN],dp[MAXN];
int N;
void Input()
{
cin>>N;
memset(dp,,sizeof(dp));
for (int i=; i<=N; i++)
{
for (int j=; j<=i; j++)
scanf("%d",&way[j]);
for (int j=i; j>=; j--)
dp[j]=max(dp[j],dp[j-])+way[j];
}
}
void Output()
{
int ret=dp[];
for (int i=; i<=N; i++)
if (ret<dp[i]) ret=dp[i];
cout<<ret<<endl;
}
int main()
{
Input();
Output();
return ;
}
POJ3176——Cow Bowling(动态规划)的更多相关文章
- POJ3176 Cow Bowling 2017-06-29 14:33 23人阅读 评论(0) 收藏
Cow Bowling Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 19173 Accepted: 12734 Des ...
- Poj3176 Cow Bowling (动态规划 数字三角形)
Description The cows don't use actual bowling balls when they go bowling. They each take a number (i ...
- POJ - 3176 Cow Bowling 动态规划
动态规划:多阶段决策问题,每步求解的问题是后面阶段问题求解的子问题,每步决策将依赖于以前步骤的决策结果.(可以用于组合优化问题) 优化原则:一个最优决策序列的任何子序列本身一定是相当于子序列初始和结束 ...
- poj-3176 Cow Bowling &&poj-1163 The Triangle && hihocoder #1037 : 数字三角形 (基础dp)
经典的数塔模型. 动态转移方程: dp[i][j]=max(dp[i+1][j],dp[i+1][j+1])+p[i][j]; #include <iostream> #include ...
- POJ3176:Cow Bowling(数字三角形问题)
地址:http://poj.org/problem?id=3176 题目解析:没什么好说的,之前上课时老师讲过.从下往上找,每一个三角形的顶点可由两个角加上顶点的值 两种方式得到 ,用dp数组保存下最 ...
- POJ 3176 Cow Bowling(dp)
POJ 3176 Cow Bowling 题目简化即为从一个三角形数列的顶端沿对角线走到底端,所取得的和最大值 7 * 3 8 * 8 1 0 * 2 7 4 4 * 4 5 2 6 5 该走法即为最 ...
- POJ 3176 Cow Bowling
Cow Bowling Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13016 Accepted: 8598 Desc ...
- Cow Bowling
Cow Bowling Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 15585 Accepted: 10363 Descrip ...
- POJ 3176:Cow Bowling
Cow Bowling Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13464 Accepted: 8897 Desc ...
随机推荐
- MVC 数据验证收集代码
控制器 Home using System; using System.Collections.Generic; using System.Linq; using System.Web; using ...
- Unity3D学习笔记——递归+非递归遍历GameObject的子物体
在Unity3D中没有提供直接的方法获取某个GameObject的子GameObject,但是所有的GameObject都有transform对象,所以,一般是通过获取子GameObject的tran ...
- Sprite Kit 入门教程
Sprite Kit 入门教程 Ray Wenderlich on September 30, 2013 Tweet 这篇文章还可以在这里找到 英语, 日语 If you're new here, ...
- vertical sync
these days, I am compelting vertical sync https://msdn.microsoft.com/zh-cn/library/windows/desktop/b ...
- window.showModalDialog的传值和返回值
window.showModalDialog(URL,dialogArgments,features) 打开一个新窗口 URL为要将打开的网页地址. dialogArgments为设定好传递给新视窗网 ...
- 最全的dedeCMS标签调用技巧和大全
1. 页面php方法获取字段 $refObj->Fields['id']; 2. 在页面上使用PHP连接数据库查询 {dede:php} $db = new DedeSql(false); $ ...
- ios frame、bound和center定义及使用场景总结
frame:指的是视图在父视图的坐标系统中的大小和位置. bound:指的是视图在视图本身的坐标系统中的大小(位置起点是原点). center:指的是视图在父视图坐标系统中的中心点. frame和bo ...
- jQuery一些常用特效方法使用实例
1. jQuery fadeIn() 用于淡入已隐藏的元素. 语法: $(selector).fadeIn(speed,callback); 实例: $("button").cli ...
- Unity3d 联通沃商店接入问题
Caused by: java.lang.RuntimeException: Can't create handler inside thread that has not called Loope ...
- Nginx状态监控
通过配置nginx.conf文件来实现对Nginx状态信息的监控. 1.配置nginx.conf vim /usr/local/nginx/conf/nginx.conf 再server块配置项中添加 ...