linux内核hash list
源码:
#ifndef _LINUX_HLIST_H
#define _LINUX_HLIST_H
/*
* Double linked lists with a single pointer list head.
* Mostly useful for hash tables where the two pointer list head is
* too wasteful.
* You lose the ability to access the tail in O(1).
*/
struct hlist_head {
struct hlist_node *first;
};
struct hlist_node {
struct hlist_node *next, **pprev;
};
#ifndef offsetof
#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
#endif
#ifndef container_of
/**
* container_of - cast a member of a structure out to the containing structure
* @ptr: the pointer to the member.
* @type: the type of the container struct this is embedded in.
* @member: the name of the member within the struct.
*
*/
#define container_of(ptr, type, member) ({ \
)->member) * __mptr = (ptr); \
(type *)((char *)__mptr - offsetof(type, member)); })
#endif
#define HLIST_HEAD_INIT { .first = NULL }
#define HLIST_HEAD(name) struct hlist_head name = { .first = NULL }
#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
static inline void INIT_HLIST_NODE(struct hlist_node *h)
{
h->next = NULL;
h->pprev = NULL;
}
static inline int hlist_unhashed(const struct hlist_node *h)
{
return !h->pprev;
}
static inline int hlist_empty(const struct hlist_head *h)
{
return !h->first;
}
static inline void __hlist_del(struct hlist_node *n)
{
struct hlist_node *next = n->next;
struct hlist_node **pprev = n->pprev;
*pprev = next;
if (next)
next->pprev = pprev;
}
static inline void hlist_del(struct hlist_node *n)
{
__hlist_del(n);
INIT_HLIST_NODE(n);
}
static inline void hlist_del_init(struct hlist_node *n)
{
if (!hlist_unhashed(n)) {
__hlist_del(n);
INIT_HLIST_NODE(n);
}
}
static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
{
struct hlist_node *first = h->first;
n->next = first;
if (first)
first->pprev = &n->next;
h->first = n;
n->pprev = &h->first;
}
/* next must be != NULL */
static inline void hlist_add_before(struct hlist_node *n,
struct hlist_node *next)
{
n->pprev = next->pprev;
n->next = next;
next->pprev = &n->next;
*(n->pprev) = n;
}
static inline void hlist_add_after(struct hlist_node *n,
struct hlist_node *next)
{
next->next = n->next;
n->next = next;
next->pprev = &n->next;
if(next->next)
next->next->pprev = &next->next;
}
/* after that we'll appear to be on some hlist and hlist_del will work */
static inline void hlist_add_fake(struct hlist_node *n)
{
n->pprev = &n->next;
}
/*
* Move a list from one list head to another. Fixup the pprev
* reference of the first entry if it exists.
*/
static inline void hlist_move_list(struct hlist_head *old,
struct hlist_head *new)
{
new->first = old->first;
if (new->first)
new->first->pprev = &new->first;
old->first = NULL;
}
#define hlist_entry(ptr, type, member) container_of(ptr,type,member)
#define hlist_for_each(pos, head) \
for (pos = (head)->first; pos ; pos = pos->next)
#define hlist_for_each_safe(pos, n, head) \
; }); \
pos = n)
/**
* hlist_for_each_entry - iterate over list of given type
* @tpos: the type * to use as a loop cursor.
* @pos: the &struct hlist_node to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the hlist_node within the struct.
*/
#define hlist_for_each_entry(tpos, pos, head, member) \
for (pos = (head)->first; \
pos && \
({ tpos = hlist_entry(pos, ;}); \
pos = pos->next)
/**
* hlist_for_each_entry_continue - iterate over a hlist continuing after current point
* @tpos: the type * to use as a loop cursor.
* @pos: the &struct hlist_node to use as a loop cursor.
* @member: the name of the hlist_node within the struct.
*/
#define hlist_for_each_entry_continue(tpos, pos, member) \
for (pos = (pos)->next; \
pos && \
({ tpos = hlist_entry(pos, ;}); \
pos = pos->next)
/**
* hlist_for_each_entry_from - iterate over a hlist continuing from current point
* @tpos: the type * to use as a loop cursor.
* @pos: the &struct hlist_node to use as a loop cursor.
* @member: the name of the hlist_node within the struct.
*/
#define hlist_for_each_entry_from(tpos, pos, member) \
for (; pos && \
({ tpos = hlist_entry(pos, ;}); \
pos = pos->next)
/**
* hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
* @tpos: the type * to use as a loop cursor.
* @pos: the &struct hlist_node to use as a loop cursor.
* @n: another &struct hlist_node to use as temporary storage
* @head: the head for your list.
* @member: the name of the hlist_node within the struct.
*/
#define hlist_for_each_entry_safe(tpos, pos, n, head, member) \
for (pos = (head)->first; \
pos && ({ n = pos->next; ; }) && \
({ tpos = hlist_entry(pos, ;}); \
pos = n)
#endif
DEMO
#include <stdio.h>
#include <stdlib.h>
#include "hlist.h" // 包含头文件
typedef struct HASH_DEMO_ST
{
int key;
int value;
struct hlist_node node; // 必须包含
}HASH_DEMO_ST;
#define HASH_HEAD_SIZE 10
struct hlist_head hashHead[HASH_HEAD_SIZE];
int hash_key(int key)
{
return key % HASH_HEAD_SIZE;
}
int main()
{
;
// 创建hash头,并初始化
; i < HASH_HEAD_SIZE; i++)
{
INIT_HLIST_HEAD(&(hashHead[i]));
}
// 添加节点
; i < ; i++)
{
HASH_DEMO_ST *new = (HASH_DEMO_ST *)malloc(sizeof(HASH_DEMO_ST));
INIT_HLIST_NODE(&(new->node)); // 初始化节点
new->key = i;
new->value = i;
hlist_add_head(&(new->node), &hashHead[hash_key(new->key)]);
}
HASH_DEMO_ST *tpos = NULL;
struct hlist_node *pos = NULL;
struct hlist_node *n = NULL;
; i < HASH_HEAD_SIZE; i++)
{
if (hlist_empty(&hashHead[i]))
{
continue;
}
hlist_for_each_entry_safe(tpos, pos, n, &hashHead[i], node)
{
printf("key:%d, value:%d\n", tpos->key, tpos->value);
hlist_del(pos);
free(tpos);
tpos = NULL;
}
}
;
}
linux内核hash list的更多相关文章
- linux内核netfilter连接跟踪的hash算法
linux内核netfilter连接跟踪的hash算法 linux内核中的netfilter是一款强大的基于状态的防火墙,具有连接跟踪(conntrack)的实现.conntrack是netfilte ...
- 深度剖析linux内核万能--双向链表,Hash链表模版
我们都知道,链表是数据结构中用得最广泛的一种数据结构,对于数据结构,有顺序存储,数组就是一种.有链式存储,链表算一种.当然还有索引式的,散列式的,各种风格的说法,叫法层出不穷,但是万变不离其中,只要知 ...
- 第4天--linux内核学习
驱动使用方式1.编译到内核中 * make uImage进入到系统后mknod /dev/led c 500 0 创建设备节点 2.编译为模块 M make module进入到系统后 mknod /d ...
- 读《linux内核完全注释》的FAQ
以下只是个人看了<linux内核完全注释>的一点理解,如果有错误,欢迎指正! 1 eip中保存的地址是逻辑地址.线性地址还是物理地址? 这个应该要分情况.eip保存的是下一条要执行的指令地 ...
- Linux 内核中的 Device Mapper 机制
本文结合具体代码对 Linux 内核中的 device mapper 映射机制进行了介绍.Device mapper 是 Linux 2.6 内核中提供的一种从逻辑设备到物理设备的映射框架机制,在该机 ...
- 《Linux内核设计与实现》CHAPTER13阅读梳理
<Linux内核设计与实现>第13章阅读总结 [edited by 5216lwr] 一.虚拟文件系统概述 1.虚拟文件系统 (也称作虚拟文件交换或VF)作为内核子系统,为用户空间程序提供 ...
- 《Linux及安全》期中总结&《Linux内核分析》期终总结
[5216 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000] WEEK NINE ...
- Linux内核--网络栈实现分析(二)--数据包的传递过程(上)
本文分析基于Linux Kernel 1.2.13 原创作品,转载请标明http://blog.csdn.net/yming0221/article/details/7492423 更多请看专栏,地址 ...
- Linux内核设计第三周——构造一个简单的Linux系统
Linux内核设计第三周 ——构造一个简单的Linux系统 一.知识点总结 计算机三个法宝: 存储程序计算机 函数调用堆栈 中断 操作系统两把宝剑: 中断上下文的切换 进程上下文的切换 linux内核 ...
随机推荐
- 使用iostat分析IO性能
对于I/O-bond类型的进程,我们经常用iostat工具查看进程IO请求下发的数量.系统处理IO请求的耗时,进而分析进程与操作系统的交互过程中IO方面是否存在瓶颈. 下面通过iostat命令使用实例 ...
- Nginx反向代理讲解和配置
首先来介绍下Nginx的反向代理.代理服务器一般分为正向代理(通常直接称为代理服务器)和反向代理. 画个图我们就好理解了. 正向代理:可以想象成是路由器,我们要通过它来上网的那种.(可以说是客户端的代 ...
- axure 母版 模板
axure的模板区域是非常重要的一个功能,网站的头部.尾部部分等很多页面同时用到的内容,都可以使用母版,因为在母版中只需要修改一次,就可以实现所有的页面更新,可以大大的加速原型的制作速度.需要重复理解 ...
- 使用iBATIS3.0完成增删改查
使用iBATIS3.0完成增删改查 iBATIS3.0和以前的版本有一些改变,不过学过以前版本的再学习3.0应该不是太难,3.0要求JDK1.5支持,因为其中增加了注解和泛型,这些都是JDK1.5才有 ...
- 【转】javascript入门系列演示·三种弹出对话框的用法实例
对话框有三种 1:只是提醒,不能对脚本产生任何改变: 2:一般用于确认,返回 true 或者 false ,所以可以轻松用于 if...else...判断 3: 一个带输入的对话框,可以返回用户填入的 ...
- eclipse项目里面的类有时候会莫名其妙出现很多错误
由于eclipse的编译是基于时间戳的判断机制的.因此当你按build all的时候有些eclipse认为时间戳没有改变的类不会被编译.因此你可以先clean一下再编译.这个时候eclipse会将 ...
- SQL2008安装自动退出
一同事安装sql 2008 然后删除过,后来再也装不上了,安装SQL2008操作执行到安装支持文件的时候就会出现安装过程自动退出的现象. 网上很多人说需要卸载,我看原因不一定是这个,因为根本没有安装成 ...
- jsonp get 和 post
原文地址:http://blog.sina.com.cn/s/blog_4a7e719d0100zqzh.html jsonp获取服务器的数据,有两种一,跨域二,不跨域如果跨域js的写法有两种1,&l ...
- SPOJ #5 The Next Palindrome
"not more than 1000000 digits" means an efficient in-place solution is needed. My first so ...
- Oracle与MySQL的几点区别
Oracle数据库与MySQL数据库的区别是本文我们主要介绍的内容,希望能够对您有所帮助. 1.组函数用法规则 mysql中组函数在select语句中可以随意使用,但在oracle中如果查询语句中有组 ...