f[i][j]表示i点追j点的期望步数。。。

这题必须spfa不能bfs。

且复杂度不会炸(仅1000条边)

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#define maxv 1050
#define maxe 2050
#define inf 1000000007
#define eps 1e-6
using namespace std;
int n,m,b,t,x,y,g[maxv],nume=;
int d[maxv],p[maxv][maxv],dis[maxv];
double f[maxv][maxv];
bool vis[maxv];
queue <int> q;
struct edge
{
int v,nxt;
}e[maxe];
void addedge(int u,int v)
{
e[++nume].v=v;
e[nume].nxt=g[u];
g[u]=nume;
}
void reset()
{
for (int i=;i<=n;i++)
for (int j=;j<=n;j++)
p[i][j]=inf;
}
void pre_bfs(int x)
{
while (!q.empty()) q.pop();
for (int i=;i<=n;i++)
{
vis[i]=false;
dis[i]=inf;
}
dis[x]=;
for (int i=g[x];i;i=e[i].nxt)
{
int v=e[i].v;
vis[v]=true;dis[v]=;q.push(v);
p[x][v]=v;
}
while (!q.empty())
{
int head=q.front();q.pop();
for (int i=g[head];i;i=e[i].nxt)
{
int v=e[i].v;
if ((dis[v]>dis[head]+) || ((dis[v]==dis[head]+) && (p[x][v]>p[x][head])))
{
dis[v]=dis[head]+;
p[x][v]=p[x][head];
if (!vis[v]) q.push(v);
}
}
vis[head]=false;
}
return;
}
double dp(int x,int y)
{
if (x==y) return ;
if (f[x][y]>eps) return f[x][y];
if ((p[x][y]==y) || (p[p[x][y]][y]==y)) return ;
double ret=;
for (int i=g[y];i;i=e[i].nxt)
{
int v=e[i].v;
if (p[p[x][y]][y]==y) ret++;
else if (p[x][y]==y) ret++;
else ret+=dp(p[p[x][y]][y],v);
}
if (p[p[x][y]][y]==y) ret++;
else if (p[x][y]==y) ret++;
else ret+=dp(p[p[x][y]][y],y);
ret/=(d[y]+);ret=ret+;
f[x][y]=ret;
return ret;
}
int main()
{
memset(d,,sizeof(d));
scanf("%d%d",&n,&m);scanf("%d%d",&b,&t);
for (int i=;i<=m;i++)
{
scanf("%d%d",&x,&y);
addedge(x,y);addedge(y,x);
d[x]++;d[y]++;
}
reset();
for (int i=;i<=n;i++)
pre_bfs(i);
for (int i=;i<=n;i++) p[i][i]=inf;
printf("%.3lf\n",dp(b,t));
return ;
}

BZOJ 1415 聪聪和可可的更多相关文章

  1. BZOJ 1415: [Noi2005]聪聪和可可( 最短路 + 期望dp )

    用最短路暴力搞出s(i, j)表示聪聪在i, 可可在j处时聪聪会走的路线. 然后就可以dp了, dp(i, j) = [ dp(s(s(i,j), j), j) + Σdp(s(s(i,j), j), ...

  2. bzoj 1415 [Noi2005]聪聪和可可——其实无环的图上概率

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1415 乍一看和“游走”一样.于是高斯消元.n^2状态,复杂度n^6…… 看看TJ,发现因为聪 ...

  3. BZOJ 1415 [NOI2005]聪聪与可可 (概率DP+dfs)

    题目大意:给你一个无向联通图,节点数n<=1000.聪聪有一个机器人从C点出发向在M点的可可移动,去追赶并吃掉可可,在单位时间内,机器人会先朝离可可最近的节点移动1步,如果移动一步机器人并不能吃 ...

  4. BZOJ 1415: [Noi2005]聪聪和可可 [DP 概率]

    传送门 题意:小兔子乖乖~~~ 题意·真:无向图吗,聪抓可,每个时间聪先走可后走,聪一次可以走两步,朝着里可最近且点编号最小的方向:可一次只一步,等概率走向相邻的点或不走 求聪抓住可的期望时间 和游走 ...

  5. bzoj 1415: [Noi2005]聪聪和可可 期望dp+记忆化搜索

    期望dp水题~ 你发现每一次肯定是贪心走 2 步,(只走一步的话就可能出现环) 然后令 $f[i][j]$ 表示聪在 $i$,可在 $j$,且聪先手两个人碰上面的期望最小次数. 用记忆化搜索转移就行了 ...

  6. bzoj 1415: [Noi2005]聪聪和可可

    直接上记忆化搜索 #include<queue> #include<cstdio> #include<algorithm> using namespace std; ...

  7. bzoj 1415: [Noi2005]聪聪和可可【期望dp+bfs】

    因为边权为1所以a直接bfs瞎搞就行--我一开始竟然写了个spfa #include<iostream> #include<cstdio> #include<queue& ...

  8. BZOJ 1415: [Noi2005]聪聪和可可(记忆化搜索+期望)

    传送门 解题思路 还是比较简答的一道题.首先\(bfs\)把每个点到其他点的最短路求出来,然后再记忆化搜索.记搜的时候猫的走法是确定的,搜一下老鼠走法就行了. 代码 #include<iostr ...

  9. 【BZOJ】【1415】【NOI2005】聪聪和可可

    数学期望+记忆化搜索 论文:<浅析竞赛中一类数学期望问题的解决方法>——汤可因  中的第一题…… Orz 黄学长 我实在是太弱,这么简单都yy不出来…… 宽搜预处理有点spfa的感觉= = ...

  10. 【BZOJ 1415】 1415: [Noi2005]聪聪和可可 (bfs+记忆化搜索+期望)

    1415: [Noi2005]聪聪和可可 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1640  Solved: 962 Description I ...

随机推荐

  1. Android开发者:你真的会用AsyncTask吗?

    [导读]在Android应用开发的过程中,我们需要时刻注意保证应用程序的稳定和UI操作响应及时,因为不稳定或响应缓慢的应用将给应用带来不好的印象,严重的用户卸载你的APP,这样你的努力就没有体现的价值 ...

  2. HDU 1098 Ignatius's puzzle(数学归纳)

    以下引用自http://acm.hdu.edu.cn/discuss/problem/post/reply.php?postid=8466&messageid=2&deep=1 题意以 ...

  3. 最常用的javascript方法函数

    字符串长度截取 function cutstr(str, len) { var temp, icount = 0, patrn = /[^\x00-\xff]/, strre = "&quo ...

  4. 单选项框RadioGroup的综合应用

    大家好,我们今天这一节要介绍的是RadioGroup 的组事件.RadioGroup 可将各自不同的RadioButton ,设限于同一个Radio 按钮组,同一个RadioGroup 组里的按钮,只 ...

  5. 使用Ninject来解决程序中组件的耦合问题

    1.为什么要用Ninject? Ninject是一个IOC容器用来解决程序中组件的耦合问题,它的目的在于做到最少配置.其他的的IOC工具过于依赖配置文件,需要使用assembly-qualified名 ...

  6. SQL Server 基础 之 GROUP BY子句

    GROUP BY 子句用于聚合信息 先看个实例,没有使用 GROUP BY 子句 SELECT SalesOrderID,OrderQty FROM Sales.SalesOrderDetail WH ...

  7. Linux网络编程10——使用UDP实现五子棋对战

    思路 1. 通信 为了同步双方的棋盘,每当一方在棋盘上落子之后,都需要发送给对方一个msg消息,让对方知道落子位置.msg结构体如下: /* 用于发给对方的信息 */ typedef struct t ...

  8. 使用HTML5实现刮刮卡效果

    你玩过刮刮卡么?一不小心可以中奖的那种.今天我给大家分享一个基于HTML5技术实现的刮刮卡效果,在PC上只需按住鼠标,在手机上你只需按住指头,轻轻刮去图层就可以模拟真实的刮奖效果. 我们利用HTML5 ...

  9. Java Servlet 技术简介

    Java Servlet 技术简介 Java 开发人员兼培训师 Roy Miller 将我们现有的 servlet 介绍资料修改成了这篇易于学习的实用教程.Roy 将介绍并解释 servlet 是什么 ...

  10. OpenSSL 使用 base64 编码/解码

    简述 关于 OpenSSL 的介绍及安装请参见:Windows下编译OpenSSL 下面主要介绍有关 OpenSSL 使用 base64 编码/解码. 简述 编码解码 更多参考 编码/解码 #incl ...