终于学到了求组合数的正确姿势

//C(n+m-2,m-1)
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
using namespace std;
#define rep(i,s,t) for(int i=s;i<=t;i++)
#define dwn(i,s,t) for(int i=s;i>=t;i--)
#define ll long long
int read(){
int x=0;char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) x=x*10+c-'0',c=getchar();
return x;
}
const int nmax=2e6+5;
const ll mod=1e9+7;
ll a[nmax];
ll pow(ll x,int n){
ll ans=x;--n;
while(n){
if(n&1) ans=(ans*x)%mod;
x=(x*x)%mod;n>>=1;
}
return ans;
}
int main(){
int n=read(),m=read();a[0]=1;
rep(i,1,n+m-2) a[i]=a[i-1]*i%mod;
printf("%lld\n",a[n+m-2]*pow(a[n-1],mod-2)%mod*pow(a[m-1],mod-2)%mod);
return 0;
}

  

基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题
 收藏
 关注
M * N的方格,一个机器人从左上走到右下,只能向右或向下走。有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果。

 
Input
第1行,2个数M,N,中间用空格隔开。(2 <= m,n <= 1000000)
Output
输出走法的数量 Mod 10^9 + 7。
Input示例
2 3
Output示例
3

51nod1119 机器人走方格 V2的更多相关文章

  1. [51nod1119]机器人走方格V2

    解题关键: 1.此题用dp的方法可以看出,dp矩阵为杨辉三角,通过总结,可以得出 答案的解为$C_{n + m - 2}^{n - 1}$ 2.此题可用组合数学的思想考虑,总的步数一共有$n+m-2$ ...

  2. 51nod-1119 1119 机器人走方格 V2(组合数学+乘法逆元+快速幂)

    题目链接: 1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB    M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很 ...

  3. 51nod 1118 机器人走方格 解题思路:动态规划 & 1119 机器人走方格 V2 解题思路:根据杨辉三角转化问题为组合数和求逆元问题

    51nod 1118 机器人走方格: 思路:这是一道简单题,很容易就看出用动态规划扫一遍就可以得到结果, 时间复杂度O(m*n).运算量1000*1000 = 1000000,很明显不会超时. 递推式 ...

  4. 1119 机器人走方格 V2(组合)

    1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题 M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于 ...

  5. 51nod 1119 机器人走方格 V2

    1119 机器人走方格 V2  基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题  收藏  关注 M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少 ...

  6. 1119 机器人走方格 V2

    1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mo ...

  7. 1119 机器人走方格 V2 (组合数学)

    M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果.   Input 第1行,2个数M,N,中间用空格隔开 ...

  8. 51nod_1119:机器人走方格 V2

    题目链接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1119 转化成杨辉三角就好辣@_@ #include< ...

  9. 51nod 1119 机器人走方格 V2 【组合数学】

    挺水的但是我好久没写组合数了- 用这样一个思想,在1~m列中,考虑每一列上升几格,相当于把n-1个苹果放进m个篮子里,可以为空,问有几种方案. 这个就是一个组合数学经典问题了,考虑n个苹果放进m个篮子 ...

随机推荐

  1. KIP-32 Add timestamps to Kafka message

    通过KIP32,Kafka的每条消息都加进了时间戳,这个KIP在0.10.0.0被加入. 说到“时间”,先贴张图,娱乐一下(如果对星球大战系列电影不熟的话,请自动略过……) 这个KIP的文档在 KIP ...

  2. Javacript中(function(){})() 与 (function(){}()) 区别 {转}

    这个问题可以从不同的角度来看,但从结果上来说 :他们是一样的.首先,如果从AST(抽象语法树)的角度来看,两者的AST是一模一样的,最终结果都是一次函数调用.因此,就解析器产生的结果论而言,两者是没有 ...

  3. Sublime Text 编辑器

    1.从http://www.sublimetext.com/2 下载Sublime Text 2编辑器. 2.安装Package Control 管理器,用于管理和安装插件包. 下载地址:https: ...

  4. Microsoft SDK 中Sample案例之Amcap項目 的运行方法(转)

    http://blog.csdn.net/erick08/article/details/7194575 Microsoft  SDK 中Sample之Amcap 的运行方法      写这篇文章的由 ...

  5. hdu 4259 Double Dealing

    思路: 找每一个数的循环节,注意优化!! 每次找一个数的循环节时,记录其路径,下次对应的数就不用再找了…… 代码如下: #include<iostream> #include<cst ...

  6. Linux下配置JDK与Tomcat

    一.下载安装对应的jdk,并配置Java环境. 官网下载地址:http://www.oracle.com/technetwork/java/javase/downloads/jdk-6u26-down ...

  7. 8天学通MongoDB——第二天 细说增删查改

    原文地址:http://www.cnblogs.com/huangxincheng/archive/2012/02/19/2357846.html 看过上一篇,相信大家都会知道如何开启mongodb了 ...

  8. vim 查看某字符串出现的次数

    http://blog.chinaunix.net/uid-23577393-id-1751983.html To count how often any pattern occurs in the ...

  9. Struts2笔记——利用token防止表单重复提交

    在一些项目中经常会让用户提交表单,当用户点击按钮提交后,如果再次浏览器刷新,这就会造成表单重复提交,若是提交的内容上传至服务器并请求数据库保存,重复提交的表单可能会导致错误,然后跳转到错误界面,这是一 ...

  10. CentOS 加载/挂载 U盘

    1.以root用户登陆   先加载USB模块 modprobe usb-storage    用fdisk -l 看看U盘的设备   假如U盘是sda1 2.确定在 目录 /mnt 下建立了 文件夹 ...