http://www.practice.geeksforgeeks.org/problem-page.php?pid=166

Minimum sum partition

Given an array, the task is to divide it into two sets S1 and S2 such that the absolute difference between their sums is minimum.

Input:
The first line contains an integer 'T' denoting the total number of test cases. In each test cases, the first line contains an integer 'N' denoting the size of array. The second line contains N space-separated integers A1, A2, ..., AN denoting the elements of the array.

Output:
In each seperate line print minimum absolute difference.

Constraints:
1<=T<=30
1<=N<=50
1<=A[I]<=50

Example:
Input:
2
4
1 6 5 11
4
36 7 46 40

Output : 
1
23

Explaination :
Subset1 = {1, 5, 6}, sum of Subset1 = 12
Subset2 = {11},       sum of Subset2 = 11

import java.util.*;
import java.lang.*;
import java.io.*; class GFG { public static int func(int[] arr) { int n = arr.length, tot = 0;
for(int i=0; i<n; ++i) {
tot += arr[i];
}
int half = tot/2, e = half; for(; e>=0; --e) {
boolean[][] dp = new boolean[n + 1][e + 1]; for(int i=0; i<=n; ++i) {
dp[i][0] = true;
} for(int i=1; i<=n; ++i) {
for(int j=1; j<=e; ++j) {
if(j >= arr[i - 1]) {
dp[i][j] |= dp[i-1][j] | dp[i-1][j - arr[i-1]];
}
dp[i][j] |= dp[i-1][j];
}
}
if(dp[n][e]) break;
} //System.out.println(e);
return Math.abs(e - (tot - e));
} public static void main (String[] args) {
Scanner in = new Scanner(System.in);
int times = in.nextInt(); while(times > 0) {
--times; int n = in.nextInt();
int[] arr = new int[n];
for(int i=0; i<n; ++i) {
arr[i] = in.nextInt();
} System.out.println(func(arr));
}
}
}

geeksforgeeks@ Minimum sum partition (Dynamic Programming)的更多相关文章

  1. [LeetCode] 64. Minimum Path Sum_Medium tag: Dynamic Programming

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...

  2. About Dynamic Programming

    Main Point: Dynamic Programming = Divide + Remember + Guess 1. Divide the key is to find the subprob ...

  3. Dynamic Programming: From novice to advanced

    作者:Dumitru 出处:http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=dynProg An impo ...

  4. [LeetCode] 132. Palindrome Partitioning II_ Hard tag: Dynamic Programming

    Given a string s, partition s such that every substring of the partition is a palindrome. Return the ...

  5. 动态规划Dynamic Programming

    动态规划Dynamic Programming code教你做人:DP其实不算是一种算法,而是一种思想/思路,分阶段决策的思路 理解动态规划: 递归与动态规划的联系与区别 -> 记忆化搜索 -& ...

  6. [Optimization] Advanced Dynamic programming

    这里主要是较为详细地理解动态规划的思想,思考一些高质量的案例,同时也响应如下这么一句口号: “迭代(regression)是人,递归(recursion)是神!” Video series for D ...

  7. 详解动态规划(Dynamic Programming)& 背包问题

    详解动态规划(Dynamic Programming)& 背包问题 引入 有序号为1~n这n项工作,每项工作在Si时间开始,在Ti时间结束.对于每项工作都可以选择参加与否.如果选择了参与,那么 ...

  8. Algo: Dynamic programming

    Copyright © 1900-2016, NORYES, All Rights Reserved. http://www.cnblogs.com/noryes/ 欢迎转载,请保留此版权声明. -- ...

  9. 6专题总结-动态规划dynamic programming

    专题6--动态规划 1.动态规划基础知识 什么情况下可能是动态规划?满足下面三个条件之一:1. Maximum/Minimum -- 最大最小,最长,最短:写程序一般有max/min.2. Yes/N ...

随机推荐

  1. Android OTA 升级之三:生成recovery.img

    Android OTA 升级之三:生成recovery.img 作者: 宋立新 Email:zjujoe@yahoo.com 前言 得到了ota升级包后,我们就可以用它来升级系统了.Android 手 ...

  2. [CCPC2016]网赛部分比赛代码

    来自HDOJ: 5833 ( Zhu and 772002 ) /* ━━━━━┒ギリギリ♂ eye! ┓┏┓┏┓┃キリキリ♂ mind! ┛┗┛┗┛┃\○/ ┓┏┓┏┓┃ / ┛┗┛┗┛┃ノ) ┓┏ ...

  3. C++关键字 inline

    在C&C++中 一.inline关键字用来定义一个类的内联函数,引入它的主要原因是用它替代C中表达式形式的宏定义. 表达式形式的宏定义一例: #define ExpressionName(Va ...

  4. Cocos2d-x 开发手记

    1.所有的源文件统一新建到Classes里,否则无法找到源文件,这样也便于跨平台编译   2.绘图坐标系,与opengl采用相同坐标系,左下角为原点 纹理坐标系,以左上角为原点   3.最近有在学习C ...

  5. java.lang.ClassNotFoundException

    在项目的properties中的Java Build Path里将Order and Export里的类库勾选上.

  6. CSS3与页面布局学习总结(三)——BFC、定位、浮动、垂直居中

    一.BFC与IFC 1.1.BFC与IFC概要 BFC(Block Formatting Context)即“块级格式化上下文”, IFC(Inline Formatting Context)即行内格 ...

  7. HDU 1080 Human Gene Functions

    最长公共子序列的变形 题目大意:给出两个基因序列,求这两个序列的最大相似度. 题目中的表格给出了两两脱氧核苷酸的相似度. 状态转移方程为: dp[i][j] = max(dp[i-1][j]+Simi ...

  8. 51nod1394 差和问题

    我只会用线段树写...不喜欢树状数组..其实跑的也不算慢?然后各种*的时候忘了longlong一直WA...药丸! 而且我不怎么会用map离散化...那么就sort+unique #include&l ...

  9. mysql日期函数(转)

    MySQL 获得当前日期时间 函数 获得当前日期+时间(date + time)函数:now() mysql> select now(); +---------------------+ | n ...

  10. android中handler用法总结

    一.Handler的定义: Handler主要接收子线程发送的数据, 并用此数据配合主线程更新UI,用来跟UI主线程交互用.比如可以用handler发送一个message,然后在handler的线程中 ...