Weka EM 协方差
Weka EM covariance
description 1:
Dear All,
I am trying to find out what is the real meaning of the minStdDev parameter in the EM clustering algorithm. Can anyone help me?
I have not looked at the code, but I suspect that the minStdDev is used as the first estimate of the covariance of a Gaussian in the mixture model. Am I correct?
I have found the equations or perhaps similar equations to the ones used to calculate the parameters for a Gaussian mixture model in the EM algorithm and there are three, which have these functions:
The first one calculates the probability of each Gaussian.
The second calculates the mean of each Gaussian
The third calculates the covariance matrix of each Gaussian
But this means to start off with there has to be an initial guess at the parameters for the Gaussian mixture model ie the probability or weighting factor for each Gaussian is needed, as is the mean and Covariance matrix.
If I am wrong how is the EM algorithm initiated ie how is the initial guess at the mixture model arrived at? Does minStdDev have any part to play in it? Also is a full covariance matrix calculated in the EM algorithm or are just the standard deviations or variances calculated, ie are right elliptical Gaussians used?
I am guessing that the random number generator is used to pick one or more data points at random as initial values for the means.
This question really follows up on my previous postings about differences between Mac and PC using the EM algorithm and worries about the stability of the algorithm. I was (naively) using the default value of 1.0E-6. However after a reply to a previous posting I have tried scaling the data to be between -1 and +1 and alsozero mean and unit SD. When I try these scaled data sets Mac and PC produce the same result. So I realised that ought to think about the value of minStdDev.
Many thanks for your help in advance.
John Black
description 2:
EM in java is a naive implementation. That is, it treats each
attribute independently of the others given the cluster (much the same
as naive Bayes for classification). Therefore, a full covariance
matrix is not computed, just the means and standard deviations of each
numeric attribute.
The minStdDev parameter is there simply to help prevent numerical
problems. This can be a problem when multiplying large densities
(arising from small standard deviations) when there are many singleton
or near-singleton values. The standard deviation for a given attribute
will not be allowed to be less than the minStdDev value.
EM is initialized with the best result out of 10 executions of
SimpleKMeans (with different seed values).
Hope this helps.
Cheers,
Mark.
Weka EM 协方差的更多相关文章
- Weka:call for the EM algorithm to achieve clustering.(EM算法)
EM算法: 在Eclipse中写出读取文件的代码然后调用EM算法计算输出结果: package EMAlg; import java.io.*; import weka.core.*; import ...
- Weka中EM算法详解
private void EM_Init (Instances inst) throws Exception { int i, j, k; // 由于EM算法对初始值较敏感,故选择run k mean ...
- GMM的EM算法实现
转自:http://blog.csdn.net/abcjennifer/article/details/8198352 在聚类算法K-Means, K-Medoids, GMM, Spectral c ...
- 【EM】代码理解
本来想自己写一个EM算法的,但是操作没两步就进行不下去了.对那些数学公式着实不懂.只好从网上找找代码,看看别人是怎么做的. 代码:来自http://blog.sina.com.cn/s/blog_98 ...
- 高斯混合聚类及EM实现
一.引言 我们谈到了用 k-means 进行聚类的方法,这次我们来说一下另一个很流行的算法:Gaussian Mixture Model (GMM).事实上,GMM 和 k-means 很像,不过 G ...
- [转载]GMM的EM算法实现
在聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明 ...
- GMM及EM算法
GMM及EM算法 标签(空格分隔): 机器学习 前言: EM(Exception Maximizition) -- 期望最大化算法,用于含有隐变量的概率模型参数的极大似然估计: GMM(Gaussia ...
- GMM的EM算法
在聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明 ...
- EM算法 大白话讲解
假设有一堆数据点,它是由两个线性模型产生的.公式如下: 模型参数为a,b,n:a为线性权值或斜率,b为常数偏置量,n为误差或者噪声. 一方面,假如我们被告知这两个模型的参数,则我们可以计算出损失. 对 ...
随机推荐
- mysql 数据库常用命令总结
(1)查看数据库可以支持的存储引擎 命令:show engines; (2)查看表结构命令:desc table_name:(3)显示表的创建语句 show create table ta ...
- 文件IO
在unix世界中视一切为文件,无论最基本的文本文件还是网络设备或是u盘,在内核看来它们的本质都是一样的.大多数文件IO操作只需要用到5个函数:open . read . write . lseek 以 ...
- 在centOS中加入本地ISO yum源
注:本文转载自<liujun_live的博客>,感谢原博主的辛勤写作:原文地址:http://blog.sina.com.cn/s/blog_8ea8e9d50101em6f.html 在 ...
- aspose.word 在书签处插入符号
doc.Range.Bookmarks["CBJYQQDFS110"].Text = ""; Aspose.Words.DocumentBuilder buil ...
- ubuntu eclipse 安装svn
1.helper->install new software 在弹出的窗口中work with 输入http://subclipse.tigris.org/update_1.6.x 2.下面窗口 ...
- 使用异步任务加载网络上json数据并加载到ListView中
Android中使用网络访问来加载网上的内容,并将其解析出来加载到控件中,是一种很常见的操作.但是Android的UI线程(也就是主线程)中是不允许进行耗时操作的,因为耗时操作会阻塞主线程,影响用户体 ...
- C#拼音转换,将简体中文转换成拼音
1. 要进行拼音转换操作,首先要引入几个文件,也就是用于操作拼音转换的文件,就是微软提供给开发者的一个类库 Microsoft Visual Studio International Pack 1.0 ...
- Android百度地图开发(三)范围搜索
// 1.新建项目 将地图API添加进classpath中: 2.在activity_main.xml中添加一个MapView,用来显示地图: <LinearLayout xmlns:andro ...
- bzoj3620 似乎在梦中见过的样子
好久没有写过KMP了,今天写个KMP练练手.此题就是枚举左端点暴力,用KMP做到O(n^2) #include<cstdio> #include<cstring> using ...
- 【24点游戏】cocos2dx 源码
1. 4个数字 24点判断 double Calc(double a, double b, string oper) { double result = 0; const char *p = ope ...