Weka EM covariance

description 1:

Dear All,

I am trying to find out what is the real meaning of the minStdDev parameter in the EM clustering algorithm. Can anyone help me?

I have not looked at the code, but I suspect that the minStdDev is used as the first estimate of the covariance of a Gaussian in the mixture model. Am I correct?

I have found the equations or perhaps similar equations to the ones used to calculate the parameters for a Gaussian mixture model in the EM algorithm and there are three, which have these functions:

    The first one calculates the probability of each Gaussian.
    The second calculates the mean of each Gaussian
    The third calculates the covariance matrix of each Gaussian

But this means to start off with there has to be an initial guess at the parameters for the Gaussian mixture model ie the probability or weighting factor for each Gaussian is needed, as is the mean and Covariance matrix.

If I am wrong how is the EM algorithm initiated ie how is the initial guess at the mixture model arrived at? Does minStdDev have any part to play in it? Also is a full covariance matrix calculated in the EM algorithm or are just the standard deviations or variances calculated, ie are right elliptical Gaussians used?

I am guessing that the random number generator is used to pick one or more data points at random as initial values for the means.

This question really follows up on my previous postings about differences between Mac and PC using the EM algorithm and worries about the stability of the algorithm. I was (naively) using the default value of 1.0E-6. However after a reply to a previous posting I have tried scaling the data to be between -1 and +1 and alsozero mean and unit SD. When I try these scaled data sets Mac and PC produce the same result. So I realised that ought to think about the value of minStdDev.

Many thanks for your help in advance.

John Black

description 2:

EM in java is a naive implementation. That is, it treats each  
attribute independently of the others given the cluster (much the same  
as naive Bayes for classification). Therefore, a full covariance  
matrix is not computed, just the means and standard deviations of each  
numeric attribute.

The minStdDev parameter is there simply to help prevent numerical  
problems. This can be a problem when multiplying large densities  
(arising from small standard deviations) when there are many singleton  
or near-singleton values. The standard deviation for a given attribute  
will not be allowed to be less than the minStdDev value.

EM is initialized with the best result out of 10 executions of  
SimpleKMeans (with different seed values).

Hope this helps.

Cheers,
Mark.

Weka EM 协方差的更多相关文章

  1. Weka:call for the EM algorithm to achieve clustering.(EM算法)

    EM算法: 在Eclipse中写出读取文件的代码然后调用EM算法计算输出结果: package EMAlg; import java.io.*; import weka.core.*; import ...

  2. Weka中EM算法详解

    private void EM_Init (Instances inst) throws Exception { int i, j, k; // 由于EM算法对初始值较敏感,故选择run k mean ...

  3. GMM的EM算法实现

    转自:http://blog.csdn.net/abcjennifer/article/details/8198352 在聚类算法K-Means, K-Medoids, GMM, Spectral c ...

  4. 【EM】代码理解

    本来想自己写一个EM算法的,但是操作没两步就进行不下去了.对那些数学公式着实不懂.只好从网上找找代码,看看别人是怎么做的. 代码:来自http://blog.sina.com.cn/s/blog_98 ...

  5. 高斯混合聚类及EM实现

    一.引言 我们谈到了用 k-means 进行聚类的方法,这次我们来说一下另一个很流行的算法:Gaussian Mixture Model (GMM).事实上,GMM 和 k-means 很像,不过 G ...

  6. [转载]GMM的EM算法实现

    在聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明 ...

  7. GMM及EM算法

    GMM及EM算法 标签(空格分隔): 机器学习 前言: EM(Exception Maximizition) -- 期望最大化算法,用于含有隐变量的概率模型参数的极大似然估计: GMM(Gaussia ...

  8. GMM的EM算法

    在聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明 ...

  9. EM算法 大白话讲解

    假设有一堆数据点,它是由两个线性模型产生的.公式如下: 模型参数为a,b,n:a为线性权值或斜率,b为常数偏置量,n为误差或者噪声. 一方面,假如我们被告知这两个模型的参数,则我们可以计算出损失. 对 ...

随机推荐

  1. POJ 2395 Out of Hay 草荒 (MST,Kruscal,最小瓶颈树)

    题意:Bessie要从牧场1到达各大牧场去,他从不关心他要走多远,他只关心他的水袋够不够水,他可以在任意牧场补给水,问他走完各大牧场,最多的一次需要多少带多少单位的水? 思路:其实就是要让所带的水尽量 ...

  2. (转)每天一个Linux命令(4): mkdir

    http://www.cnblogs.com/peida/archive/2012/10/25/2738271.html linux mkdir 命令用来创建指定的名称的目录,要求创建目录的用户在当前 ...

  3. reverse(), extend(), sort() methods of list

    >>> l = list('sdf') >>> l ['s', 'd', 'f'] >>> id(l) 4520422000 >>&g ...

  4. 嵌入式 H264—MP4格式及在MP4文件中提取H264的SPS、PPS及码流

    一.MP4格式基本概念 MP4格式对应标准MPEG-4标准(ISO/IEC14496) 二.MP4封装格式核心概念 1  MP4封装格式对应标准为 ISO/IEC 14496-12(信息技术 视听对象 ...

  5. 【PHP入门到精通】:Ch03:PHP语言基础

    1, PHP风格 这里为了显示代码把"<"和">"和key值以空格分开了,实际书写时切记不要将其分开: (1) < ?php ? >: ...

  6. [再寄小读者之数学篇](2014-11-19 $\tan x/x$ 在 $(0,\pi/2)$ 上递增)

    $$\bex \frac{\tan x}{x}\nearrow. \eex$$ Ref. [Proof Without Words: Monotonicity of $\tan x/x$ on $(0 ...

  7. 使用Firebug和FirePHP调试PHP

    大家都知道Firebug,可能不知大FirePHP,它也是FireFox插件用来调试PHP的,首先确保你安装了Firebug,然后再去安装FirePHP,这是你会看到Firebug多了一只蓝色的虫: ...

  8. LoadRunner参数数组

    参数数组提供了对一类参数集中存放的机制,其中LR内置的几个函数有:lr_paramarr_idx().lr_paramarr_len().lr_paramarr_random() 同时参数数组必须满足 ...

  9. Linux环境Weblogic10g服务部署

    1.先安装XManager: 2.进入XShell,远程连接Linux主机后,按如下操作即可打开XManager配置WebLogic部署服务: [root@server36 bin]# cd /[ro ...

  10. 二.JSP开发过程中遇到的问题及解决

    一.开发环境问题 问题一:Failed to load the JNI shared library 启动Eclipse时弹出“Failed to load the JNI shared librar ...