Weka EM 协方差
Weka EM covariance
description 1:
Dear All,
I am trying to find out what is the real meaning of the minStdDev parameter in the EM clustering algorithm. Can anyone help me?
I have not looked at the code, but I suspect that the minStdDev is used as the first estimate of the covariance of a Gaussian in the mixture model. Am I correct?
I have found the equations or perhaps similar equations to the ones used to calculate the parameters for a Gaussian mixture model in the EM algorithm and there are three, which have these functions:
The first one calculates the probability of each Gaussian.
The second calculates the mean of each Gaussian
The third calculates the covariance matrix of each Gaussian
But this means to start off with there has to be an initial guess at the parameters for the Gaussian mixture model ie the probability or weighting factor for each Gaussian is needed, as is the mean and Covariance matrix.
If I am wrong how is the EM algorithm initiated ie how is the initial guess at the mixture model arrived at? Does minStdDev have any part to play in it? Also is a full covariance matrix calculated in the EM algorithm or are just the standard deviations or variances calculated, ie are right elliptical Gaussians used?
I am guessing that the random number generator is used to pick one or more data points at random as initial values for the means.
This question really follows up on my previous postings about differences between Mac and PC using the EM algorithm and worries about the stability of the algorithm. I was (naively) using the default value of 1.0E-6. However after a reply to a previous posting I have tried scaling the data to be between -1 and +1 and alsozero mean and unit SD. When I try these scaled data sets Mac and PC produce the same result. So I realised that ought to think about the value of minStdDev.
Many thanks for your help in advance.
John Black
description 2:
EM in java is a naive implementation. That is, it treats each
attribute independently of the others given the cluster (much the same
as naive Bayes for classification). Therefore, a full covariance
matrix is not computed, just the means and standard deviations of each
numeric attribute.
The minStdDev parameter is there simply to help prevent numerical
problems. This can be a problem when multiplying large densities
(arising from small standard deviations) when there are many singleton
or near-singleton values. The standard deviation for a given attribute
will not be allowed to be less than the minStdDev value.
EM is initialized with the best result out of 10 executions of
SimpleKMeans (with different seed values).
Hope this helps.
Cheers,
Mark.
Weka EM 协方差的更多相关文章
- Weka:call for the EM algorithm to achieve clustering.(EM算法)
EM算法: 在Eclipse中写出读取文件的代码然后调用EM算法计算输出结果: package EMAlg; import java.io.*; import weka.core.*; import ...
- Weka中EM算法详解
private void EM_Init (Instances inst) throws Exception { int i, j, k; // 由于EM算法对初始值较敏感,故选择run k mean ...
- GMM的EM算法实现
转自:http://blog.csdn.net/abcjennifer/article/details/8198352 在聚类算法K-Means, K-Medoids, GMM, Spectral c ...
- 【EM】代码理解
本来想自己写一个EM算法的,但是操作没两步就进行不下去了.对那些数学公式着实不懂.只好从网上找找代码,看看别人是怎么做的. 代码:来自http://blog.sina.com.cn/s/blog_98 ...
- 高斯混合聚类及EM实现
一.引言 我们谈到了用 k-means 进行聚类的方法,这次我们来说一下另一个很流行的算法:Gaussian Mixture Model (GMM).事实上,GMM 和 k-means 很像,不过 G ...
- [转载]GMM的EM算法实现
在聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明 ...
- GMM及EM算法
GMM及EM算法 标签(空格分隔): 机器学习 前言: EM(Exception Maximizition) -- 期望最大化算法,用于含有隐变量的概率模型参数的极大似然估计: GMM(Gaussia ...
- GMM的EM算法
在聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明 ...
- EM算法 大白话讲解
假设有一堆数据点,它是由两个线性模型产生的.公式如下: 模型参数为a,b,n:a为线性权值或斜率,b为常数偏置量,n为误差或者噪声. 一方面,假如我们被告知这两个模型的参数,则我们可以计算出损失. 对 ...
随机推荐
- C的结构体使用
C的结构体演示 #include <stdio.h> struct A //建立结构体A { char *name; int s1; struct A *next; }; void mai ...
- acess() 判断目录是否存在
acess()功能描述: 检查调用进程是否可以对指定的文件执行某种操作. <pre lang="c" escaped="true">#include ...
- postgresql pg_hba.conf
pg_hba.conf是客户端认证配置文件 METHOD指定如何处理客户端的认证.常用的有ident,md5,password,trust,reject. PostgreSQL默认只监听本地端口,用n ...
- 收缩Oracle数据文件
最近有网友提到收缩Oracle数据文件的问题,这是DBA经常碰到的一个常见问题.通常我们需要收缩相应的数据文件以减少来自磁盘空间的压力以及提高数据库的整体性能.但这并非对于所有情形都是适用的,尤其是生 ...
- OpenGL ES之GLSurfaceView学习一:介绍
原文地址::http://120.132.134.205/cmdn/supesite/?uid-5358-action-viewspace-itemid-6527 GLSurfaceView是一个视图 ...
- mysql innodb锁简析(2)
继续昨天的innodb锁的分析: 注:此博文参考一下地址,那里讲的也很详细.http://xm-king.iteye.com/blog/770721 mysql事务的隔离级别分为四种,隔离级别越高,数 ...
- 别人的的MYSQL学习心得(十五) 日志
我的MYSQL学习心得(十五) 日志 我的MYSQL学习心得(一) 简单语法 我的MYSQL学习心得(二) 数据类型宽度 我的MYSQL学习心得(三) 查看字段长度 我的MYSQL学习心得(四) 数据 ...
- 设置TextView控件的背景透明度和字体透明度
TextView tv = (TextView) findViewById(R.id.xx); 第1种:tv.setBackgroundColor(Color.argb(255, 0, 255, 0) ...
- java读取目录下所有csv文件数据,存入三维数组并返回
package dwzx.com.get; import java.io.BufferedReader; import java.io.File; import java.io.FileReader; ...
- Go语言相关图书推荐
Go语言编程 作 者 许式伟 等 著 出 版 社 人民邮电出版社 出版时间 2012-08-01 版 次 1 页 数 245 印刷时间 2012-08-01 开 ...