Investment_完全背包
Description
John did not need that much money for the moment. But he realized that it would be a good idea to store this capital in a safe place, and have it grow until he decided to retire. The bank convinced him that a certain kind of bond was interesting for him.
This kind of bond has a fixed value, and gives a fixed amount of yearly interest, payed to the owner at the end of each year. The bond has no fixed term. Bonds are available in different sizes. The larger ones usually give a better interest. Soon John realized that the optimal set of bonds to buy was not trivial to figure out. Moreover, after a few years his capital would have grown, and the schedule had to be re-evaluated.
Assume the following bonds are available:
| Value | Annual interest |
| 4000 3000 |
400 250 |
With a capital of e10 000 one could buy two bonds of $4 000, giving a yearly interest of $800. Buying two bonds of $3 000, and one of $4 000 is a better idea, as it gives a yearly interest of $900. After two years the capital has grown to $11 800, and it makes sense to sell a $3 000 one and buy a $4 000 one, so the annual interest grows to $1 050. This is where this story grows unlikely: the bank does not charge for buying and selling bonds. Next year the total sum is $12 850, which allows for three times $4 000, giving a yearly interest of $1 200.
Here is your problem: given an amount to begin with, a number of years, and a set of bonds with their values and interests, find out how big the amount may grow in the given period, using the best schedule for buying and selling bonds.
Input
The first line of a test case contains two positive integers: the amount to start with (at most $1 000 000), and the number of years the capital may grow (at most 40).
The following line contains a single number: the number d (1 <= d <= 10) of available bonds.
The next d lines each contain the description of a bond. The description of a bond consists of two positive integers: the value of the bond, and the yearly interest for that bond. The value of a bond is always a multiple of $1 000. The interest of a bond is never more than 10% of its value.
Output
Sample Input
1
10000 4
2
4000 400
3000 250
Sample Output
14050
【题意】给出本金和年数,给出几种物品价格和每年的盈利,求最大本息和
【思路】完全背包,数比较大,需要/1000压缩一下
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
const int N=;
int dp[N];
struct node
{
int val,w;
}a[];
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n,m,y;
scanf("%d%d",&m,&y);
scanf("%d",&n); for(int i=;i<=n;i++)
{
scanf("%d%d",&a[i].val,&a[i].w);
a[i].val/=;//数太大,对背包大小进行压缩
}
for(int i=;i<=y;i++)
{
int tmp=m/;
memset(dp,,sizeof(dp));//在每一年都要清零
for(int j=;j<=n;j++)//完全背包
{
for(int k=a[j].val;k<=tmp;k++)
{
dp[k]=max(dp[k],dp[k-a[j].val]+a[j].w);
}
}
m+=dp[tmp];//本息和
}
printf("%d\n",m);
}
return ;
}
Investment_完全背包的更多相关文章
- 【USACO 3.1】Stamps (完全背包)
题意:给你n种价值不同的邮票,最大的不超过10000元,一次最多贴k张,求1到多少都能被表示出来?n≤50,k≤200. 题解:dp[i]表示i元最少可以用几张邮票表示,那么对于价值a的邮票,可以推出 ...
- HDU 3535 AreYouBusy (混合背包)
题意:给你n组物品和自己有的价值s,每组有l个物品和有一种类型: 0:此组中最少选择一个 1:此组中最多选择一个 2:此组随便选 每种物品有两个值:是需要价值ci,可获得乐趣gi 问在满足条件的情况下 ...
- HDU2159 二维完全背包
FATE Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- CF2.D 并查集+背包
D. Arpa's weak amphitheater and Mehrdad's valuable Hoses time limit per test 1 second memory limit p ...
- UVALive 4870 Roller Coaster --01背包
题意:过山车有n个区域,一个人有两个值F,D,在每个区域有两种选择: 1.睁眼: F += f[i], D += d[i] 2.闭眼: F = F , D -= K 问在D小于等于一定限度的时 ...
- 洛谷P1782 旅行商的背包[多重背包]
题目描述 小S坚信任何问题都可以在多项式时间内解决,于是他准备亲自去当一回旅行商.在出发之前,他购进了一些物品.这些物品共有n种,第i种体积为Vi,价值为Wi,共有Di件.他的背包体积是C.怎样装才能 ...
- POJ1717 Dominoes[背包DP]
Dominoes Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6731 Accepted: 2234 Descript ...
- HDU3466 Proud Merchants[背包DP 条件限制]
Proud Merchants Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others) ...
- POJ1112 Team Them Up![二分图染色 补图 01背包]
Team Them Up! Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7608 Accepted: 2041 S ...
随机推荐
- jsp基础知识(基本的语法及原理)
jsp 语法分为三种不同的类型: (1) 编译器指令: 类如: <%@ page import="java.io.*"%> (2) 脚本语法: 指定的是java代码: ...
- translatesAutoresizingMaskIntoConstraints
如果是从代码层面开始使用Autolayout,需要对使用的View的translatesAutoresizingMaskIntoConstraints的属性设置为NO,即可开始通过代码添加Constr ...
- java中的if-Switch选择结构
字随笔走,笔随心走,随笔,随心.纯属个人学习分析总结,如有观者还请不啬领教. 1.if选择结构 什么是if结构:if选择结构是根据判断结果再做处理的一种语法结构. 起语法是: if(判断条件){ 操作 ...
- PDF 补丁丁 0.4.1 版将增加嵌入中文字库的功能
有不少用户反映,部分老 PDF 文件由于在制作时没有嵌入字库,导致该文件在某些阅读器上显示为乱码.即使他们用 Acrobat 嵌入了相应的字库,文件仍然无法正确显示. 这些老 PDF 看起来具有如下相 ...
- ASP.NET-【Excel】-将Excel中的数据批量加载到SQLserver数据库
用到了一个SqlBulkCopy的类 核心代码分析 代码我还没有测试过 string excelConnectionString = string.Format("Provider=Micr ...
- Windows多线程编程总结
1 内核对象 1 .1 内核对象的概念 内核对象是内核分配的一个内存块,这种内存块是一个数据结构,表示内核对象的各种特征.并且只能由内核来访问.应用程序若需要访问内核对象,需要通过操作系统提供的函数来 ...
- ncs安装及初次运行
Tail-f NCS 作为网络配置程序和基础设备之间的接口,能够展现各种服务,修改各开发商不相同的设备配置,同时能及时同步网络设备状态到cdb(configuration database,配置数据库 ...
- HDU 3255 扫描线(立方体体积并变形)
Farming Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Su ...
- LCA-倍增法(在线)
原文:http://www.tuicool.com/articles/N7jQV32 1. DFS预处理出所有节点的深度和父节点 inline void dfs(int u) { int i; for ...
- discuz 系列产品 在ie9下注册成功后不跳转bug处理
header.htm 把 <meta http-equiv="x-ua-compatible" content="ie=7" /> 改为 <m ...