【LeetCode OJ】Surrounded Regions
Problem Link:
http://oj.leetcode.com/problems/surrounded-regions/
We can do follows in the 2D board.
Use BFS from all 'O' cells on the boundary and mark all connected 'O' cells
Scan the board and flip all unmarked 'O' to 'X'.
The following code is python code accepted by oj.leetcode.com.
class Solution:
# @param board, a 2D array
# Capture all regions by modifying the input board in-place.
# Do not return any value.
def solve(self, board):
"""
Let m and n be the number of rows and columns of board
BFS from 'O' nodes on the boundary
"""
# Special case 1: if m <= 2, then all cells are on the boundary
m = len(board)
if m <= 2:
return
# Special case 2: if n <= 2, then all cells are on the boundary
n = len(board[0])
if n <= 2:
return # Queue used for BFS
Q = [] # Find all 'O' cells in on the boundary
# check the first row and last row
for j in xrange(n):
if board[0][j] == 'O':
Q.append( (0,j) )
if board[m-1][j] == 'O':
Q.append( (m-1,j) )
# check the first column and last column
for i in xrange(1,m-1):
if board[i][0] == 'O':
Q.append( (i,0) )
if board[i][n-1] == 'O':
Q.append( (i,n-1) ) # Start BFS from the nodes in Q
# Each time set the node to "M",
# which means the node is not captured
while Q:
new_Q = []
for (i,j) in Q:
board[i][j] = 'M'
# Check left node
if i > 0 and board[i-1][j] == 'O':
new_Q.append( (i-1,j) )
# Check right node
if i < m-1 and board[i+1][j] == 'O':
new_Q.append( (i+1,j) )
# Check top node
if j > 0 and board[i][j-1] == 'O':
new_Q.append( (i, j-1) )
# Check bottom node
if j < n-1 and board[i][j+1] == 'O':
new_Q.append( (i, j+1) )
Q = new_Q # Scan the 2D board
# 1) set node of O to X
# 2) set node of OO to O
for i in xrange(m):
for j in xrange(n):
if board[i][j] == 'O':
board[i][j] = 'X'
if board[i][j] == 'M':
board[i][j] = 'O'
【LeetCode OJ】Surrounded Regions的更多相关文章
- 【LeetCode OJ】Interleaving String
Problem Link: http://oj.leetcode.com/problems/interleaving-string/ Given s1, s2, s3, find whether s3 ...
- 【LeetCode OJ】Reverse Words in a String
Problem link: http://oj.leetcode.com/problems/reverse-words-in-a-string/ Given an input string, reve ...
- 【LeetCode OJ】Validate Binary Search Tree
Problem Link: https://oj.leetcode.com/problems/validate-binary-search-tree/ We inorder-traverse the ...
- 【LeetCode OJ】Recover Binary Search Tree
Problem Link: https://oj.leetcode.com/problems/recover-binary-search-tree/ We know that the inorder ...
- 【LeetCode OJ】Same Tree
Problem Link: https://oj.leetcode.com/problems/same-tree/ The following recursive version is accepte ...
- 【LeetCode OJ】Symmetric Tree
Problem Link: https://oj.leetcode.com/problems/symmetric-tree/ To solve the problem, we can traverse ...
- 【LeetCode OJ】Binary Tree Level Order Traversal
Problem Link: https://oj.leetcode.com/problems/binary-tree-level-order-traversal/ Traverse the tree ...
- 【LeetCode OJ】Binary Tree Zigzag Level Order Traversal
Problem Link: https://oj.leetcode.com/problems/binary-tree-zigzag-level-order-traversal/ Just BFS fr ...
- 【LeetCode OJ】Maximum Depth of Binary Tree
Problem Link: https://oj.leetcode.com/problems/maximum-depth-of-binary-tree/ Simply BFS from root an ...
随机推荐
- WPF:行列显示
新建显示病人信息控件PatientElement Add-->NewItem-->WPF-->UserControl(WPF),名称:PatientElement.xmal < ...
- md5算法原理一窥(其一)
首先,需要了解的事,md5并不是传说中的加密算法,只是一种散列算法.其加密的算法并不是我们说所的那样固定不变,只是一种映射的关系. 所以解密MD5没有现成的算法,只能用穷举法,把可能出现的明文,用MD ...
- 149. Max Points on a Line *HARD* 求点集中在一条直线上的最多点数
Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...
- android - anim translate中 fromXDelta、toXDelta、fromYDelta、toXDelta属性
<?xml version="1.0" encoding="utf-8"?> <set xmlns:android="http:// ...
- swfobject2.2
官方网址:http://blog.deconcept.com/swfobject/ Github地址:https://github.com/swfobject/swfobject 谷歌地址 貌似被和谐 ...
- Visual Studio 2012出现“无法访问T-SQL组件和安装了不兼容伯 DacFx版本”的解决办法
参考:Visual Studio 2012出现“无法访问T-SQL组件和安装了不兼容伯 DacFx版本”的解决办法 Vs2012的下载地址: https://msdn.microsoft.com/en ...
- AES加密 16进制与二进制转换
import java.security.Key; import javax.crypto.Cipher; import javax.crypto.KeyGenerator; import javax ...
- BZOJ3996 [TJOI2015]线性代数
就是求$D = A \times B \times A^T - C \times A^T$ 展开也就是$$D = \sum_{i, j} A_i * A_j * B_{i, j} - \sum_{i} ...
- ruby在线学习
http://tryruby.org/ [Heroku空间] 免费ruby空间
- 一键制作u盘启动盘教程
第一步:制作完成u深度u盘启动盘 第二步:下载Ghost Win7系统镜像文件包,存入u盘启动盘 第三步:电脑模式更改成ahci模式,不然安装完成win7系统会出现蓝屏现象 正式安装步骤: u ...