点击打开链接

Currency Exchange
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 16635   Accepted: 5821

Description

Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies.
Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency. 

For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR. 

You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges,
and real RAB, CAB, RBA and CBA - exchange rates and commissions when exchanging A to B and B to A respectively. 

Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative
sum of money while making his operations. 

Input

The first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description
of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=103

For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10-2<=rate<=102, 0<=commission<=102

Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations
will be less than 104

Output

If Nick can increase his wealth, output YES, in other case output NO to the output file.

Sample Input

3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00

Sample Output

YES

bellman-ford算法,题目大意是有N种货币和M个货币交换点,Nick有一些其中一种货币,每两种货币兑换有一个公式,就是(本金 - 手续费) * 转换率,每个交换点只能交换某两种特定的货币,最后问是否可以通过这些交换点使得最后的本金会增加

bellman-ford计算是否有负圈回路就好,其实就是判断是否有使本金增长的圈

#include<stdio.h>
double map[101][101][2];
double dis[101];
int n, m, s;
double v;
bool bellman()
{
int i, j, k;
for(i = 1; i < 101; i++)
{
dis[i] = 0;
}
dis[s] = v;
for(i = 1; i < n; i++)
{
for(j = 1; j <= n; j++)
{
for(k = 1; k <= n; k++)
{
if(map[j][k][0] > 0)
{
if(dis[k] < (dis[j] - map[j][k][1]) * map[j][k][0])
{
dis[k] = (dis[j] - map[j][k][1]) * map[j][k][0];
}
}
}
}
}
for(j = 1; j <= n; j ++)
{
for(k = 1; k <= n; k++)
{
if(dis[k] < (dis[j] - map[j][k][1]) * map[j][k][0])
return 0;
}
}
return 1;
}
int main()
{ scanf("%d %d %d %lf", &n, &m, &s, &v);
int i = m;
int a, b;
while(i--)
{
scanf("%d %d", &a, &b);
scanf("%lf %lf %lf %lf", &map[a][b][0], &map[a][b][1], &map[b][a][0], &map[b][a][1]);
}
if(bellman() == 0)
printf("YES\n");
else
printf("NO\n");
return 0;
}

poj 1860 Currency Exchange :bellman-ford的更多相关文章

  1. 最短路(Bellman_Ford) POJ 1860 Currency Exchange

    题目传送门 /* 最短路(Bellman_Ford):求负环的思路,但是反过来用,即找正环 详细解释:http://blog.csdn.net/lyy289065406/article/details ...

  2. POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环)

    POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环) Description Several currency ...

  3. POJ 1860 Currency Exchange 最短路+负环

    原题链接:http://poj.org/problem?id=1860 Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Tota ...

  4. POJ 1860 Currency Exchange + 2240 Arbitrage + 3259 Wormholes 解题报告

    三道题都是考察最短路算法的判环.其中1860和2240判断正环,3259判断负环. 难度都不大,可以使用Bellman-ford算法,或者SPFA算法.也有用弗洛伊德算法的,笔者还不会SF-_-…… ...

  5. 图论 --- spfa + 链式向前星 : 判断是否存在正权回路 poj 1860 : Currency Exchange

    Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 19881   Accepted: 711 ...

  6. POJ 1860 Currency Exchange (最短路)

    Currency Exchange Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 60000/30000K (Java/Other) T ...

  7. POJ 1860 Currency Exchange【bellman_ford判断是否有正环——基础入门】

    链接: http://poj.org/problem?id=1860 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...

  8. POJ 1860——Currency Exchange——————【最短路、SPFA判正环】

    Currency Exchange Time Limit:1000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u S ...

  9. poj - 1860 Currency Exchange Bellman-Ford 判断正环

    Currency Exchange POJ - 1860 题意: 有许多货币兑换点,每个兑换点仅支持两种货币的兑换,兑换有相应的汇率和手续费.你有s这个货币 V 个,问是否能通过合理地兑换货币,使得你 ...

随机推荐

  1. JQuery Uplodify上传附件(同一个页面多个uplodify控件解决方案)

    功能描述:实现同一页面中多个不同附件的上传保存,且做到最大程度的减少代码修改量(最大程度的公用),为了方便实现垃圾数据和垃圾文件的处理,项目采用临时文件夹的方式:即:文件自动上传先保存到临时文件夹下, ...

  2. Jenkins初探

    最近搞搞接口测试,Postman脚本搞好了,但是每次都要手动运行,是不是太low了?Yes,it is. 最近好多人都在用Jenkins搞自动化部署集成之类的,我也凑热闹搞一下. 前提: 1. 已经安 ...

  3. Tortoisesvn单个文件夹checkout

  4. 日期转换类 DateConverter.java

    package com.util; import java.text.DateFormat; import java.text.SimpleDateFormat; import java.util.D ...

  5. Oralce开窗函数OVER()的一些应用

    好久没用oracle了,发现很多东西已经忘记.正好今天改写个语句,顺便回忆了一下,乘热整理以备遗忘. over(order by salary) 按照salary排序进行累计,order by是个默认 ...

  6. 转(linux shell)

    请把如下字符串 stu494 e222f stu495 bedf3 stu496 92236 stu497 49b91 转为如下形式: stu494=e222f stu495=bedf3 stu496 ...

  7. 模型(modle)

    MVC模式三:模型操作数据库,之后注册变量于模板,之后用控制器的dispaly()方法显示; 一.跨控制器调用方法 因为控制器的实质是类,所以在该方法中造一个要调用的类的对象,调用他的方法; 比如,在 ...

  8. [转]何为C10K问题

    我在学习网络编程的时候经常看到C10K问题,那么究竟什么是C10K问题呢?我看到了一篇好文章就转了过来,原文地址为:c10k问题 所谓c10k问题,指的是服务器同时支持成千上万个客户端的问题,也就是c ...

  9. 06文件与IO

    这节主要学习系统调用stat.lstat.fstat. 格式如下: int fstat(int filedes, struct stat *buf); int stat(const char *pat ...

  10. bzoj2734 集合选数

    Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x 不能在该子集中 ...